Development of a morphologically realistic mouse phantom for pre-clinical photoacoustic imaging.


Journal

Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 12 04 2023
accepted: 10 07 2023
medline: 11 9 2023
pubmed: 3 8 2023
entrez: 3 8 2023
Statut: ppublish

Résumé

Characterizations based on anatomically realistic phantoms are highly effective to perform accurate technical validation of imaging systems. Specifically for photoacoustic imaging (PAI), although a variety of phantom models with simplified geometries are reported, an unmet need still exists to establish morphologically realistic heterogeneous pre-clinical phantoms. So the development of a mouse-mimicking phantom can reduce the use of animals for the validation and standardization studies of pre-clinical PAI systems and thus eventually translate the PAI technology to clinical research. Here we designed, developed, and fabricated a stable phantom that mimics the detailed morphology of a mouse, to be used as a realistic tool for PAI. The mouse phantom, has been designed by using a combination of image modeling and 3D-printing techniques. As a tissue-mimicking material, we have used copolymer-in-oil-based material that was recently proposed by the International Photoacoustic Standardization Consortium (IPASC). In particular, the anatomically realistic phantom has been modeled by using the real atlas of a mouse as a reference. The mouse phantom includes a 3D-printed skeleton and the main abdominal organs such as the liver, spleen, and kidneys obtained by using doped copolymer-in-oil material with 3D-printed molds. In addition, the acoustic and optical properties of the tissue-mimicking material and the long-term stability have been broadly characterized. Furthermore, our studies showed that the phantom is durable and stable for more than 200 days, under normal storage and repeated use. Fabrication protocol is easy to reproduce. As a result, the proposed morphologically realistic mouse phantom offers durability, material compatibility, and an unprecedented realistic resemblance to the actual rodents' anatomy in PAI. This durable morphologically realistic mouse phantom would minimize the animal experiments in compliance with the 3R principle of Replacement, Reduction, and Refinement. To our knowledge, this is the first time an anatomically realistic heterogeneous mouse phantom has been proposed for PAI in pre-clinical animal imaging and tested its durability over 200 days.

Sections du résumé

BACKGROUND BACKGROUND
Characterizations based on anatomically realistic phantoms are highly effective to perform accurate technical validation of imaging systems. Specifically for photoacoustic imaging (PAI), although a variety of phantom models with simplified geometries are reported, an unmet need still exists to establish morphologically realistic heterogeneous pre-clinical phantoms. So the development of a mouse-mimicking phantom can reduce the use of animals for the validation and standardization studies of pre-clinical PAI systems and thus eventually translate the PAI technology to clinical research.
PURPOSE OBJECTIVE
Here we designed, developed, and fabricated a stable phantom that mimics the detailed morphology of a mouse, to be used as a realistic tool for PAI.
METHODS METHODS
The mouse phantom, has been designed by using a combination of image modeling and 3D-printing techniques. As a tissue-mimicking material, we have used copolymer-in-oil-based material that was recently proposed by the International Photoacoustic Standardization Consortium (IPASC). In particular, the anatomically realistic phantom has been modeled by using the real atlas of a mouse as a reference. The mouse phantom includes a 3D-printed skeleton and the main abdominal organs such as the liver, spleen, and kidneys obtained by using doped copolymer-in-oil material with 3D-printed molds. In addition, the acoustic and optical properties of the tissue-mimicking material and the long-term stability have been broadly characterized.
RESULTS RESULTS
Furthermore, our studies showed that the phantom is durable and stable for more than 200 days, under normal storage and repeated use. Fabrication protocol is easy to reproduce. As a result, the proposed morphologically realistic mouse phantom offers durability, material compatibility, and an unprecedented realistic resemblance to the actual rodents' anatomy in PAI.
CONCLUSION CONCLUSIONS
This durable morphologically realistic mouse phantom would minimize the animal experiments in compliance with the 3R principle of Replacement, Reduction, and Refinement. To our knowledge, this is the first time an anatomically realistic heterogeneous mouse phantom has been proposed for PAI in pre-clinical animal imaging and tested its durability over 200 days.

Identifiants

pubmed: 37535898
doi: 10.1002/mp.16651
doi:

Substances chimiques

Polymers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5757-5771

Subventions

Organisme : European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie
ID : 811226
Organisme : EPSRC-ThUNDDAR network
ID : EP/N026942/1
Organisme : Academy of Medical Sciences Springboard
ID : SBF007∖100007

Informations de copyright

© 2023 American Association of Physicists in Medicine.

Références

Pogue BW, Patterson MS. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt. 2006;11(4):041102. doi:10.1117/1.2335429
Bohndiek SE, Bodapati S, Van De Sompel D, Kothapalli SR, Gambhir SS. Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments. PLoS One. 2013;8(9):e75533. doi:10.1371/journal.pone.0075533
Palma-Chavez J, Pfefer TJ, Agrawal A, Jokerst JV, Vogt WC. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment. J Biomed Opt. 2021;26(09):090901. doi:10.1117/1.jbo.26.9.090901
Cabrelli LC, Pelissari PIBGB, Deana AM, Carneiro AAO, Pavan TZ. Stable phantom materials for ultrasound and optical imaging. Phys Med Biol. 2017;62(2):432-447. doi:10.1088/1361-6560/62/2/432
Li C, Wang LV. Photoacoustic tomography and sensing in biomedicine. Phys Med Biol. 2009;54(19):R59-R97. doi:10.1088/0031-9155/54/19/R01
Kim C, Favazza C, Wang LV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev. 2010;110(5):2756-2782. doi:10.1021/cr900266s
Vogt WC, Jia C, Wear KA, Garra BS, Joshua Pfefer T. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties. J Biomed Opt. 2016;21(10):101405. doi:10.1117/1.jbo.21.10.101405
Nikitichev DI, Barburas A, McPherson K, Mari JM, West SJ, Desjardins AE. Construction of 3-dimensional printed ultrasound phantoms with wall-less vessels. J Ultrasound Med. 2016;35(6):1333-1339. doi:10.7863/ultra.15.06012
Ratto F, Cavigli L, Borri C, et al. Hybrid organosilicon/polyol phantom for photoacoustic imaging. Biomed Opt Express. 2019;10(8):3719-3730. doi:10.1364/boe.10.003719
Cook JR, Bouchard RR, Emelianov SY. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomed Opt Express. 2011;2(11):3193-3206. doi:10.1364/boe.2.003193
Xia W, Piras D, Heijblom M, Steenbergen W, van Leeuwen TG, Manohar S. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited. J Biomed Opt. 2011;16(7):075002. doi:10.1117/1.3597616
Kharine A, Manohar S, Seeton R, et al. Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography. Phys Med Biol. 2003;48(3):357-370. doi:10.1088/0031-9155/48/3/306
Durmus HO, Kocaata S, Naz G, et al. Investigation of basic optical properties of tissue phantoms under 635 nm low-level laser irradiation. In: IEEE Medical Measurements and Applications, MeMeA 2020 - Conference Proceedings. IEEE; 2020:1-6. doi:10.1109/MeMeA49120.2020.9137206
Hariri A, Palma-Chavez J, Wear KA, Pfefer TJ, Jokerst JV, Vogt WC. Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems. Photoacoustics. 2021;22:100245. doi:10.1016/j.pacs.2021.100245
Palma-Chavez J, Wear KA, Mantri Y, Jokerst JV, Vogt WC. Photoacoustic imaging phantoms for assessment of object detectability and boundary buildup artifacts. Photoacoustics. 2022;26:100348. doi:10.1016/j.pacs.2022.100348
Vieira SL, Pavan TZ, Junior JE, Carneiro AAO. Paraffin-Gel tissue-mimicking material for ultrasound-guided needle biopsy phantom. Ultrasound Med Biol. 2013;39(12):2477-2484. doi:10.1016/j.ultrasmedbio.2013.06.008
Maneas E, Xia W, Ogunlade O, et al. Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging. Biomed Opt Express. 2018;9(3):1151-1163. doi:10.1364/boe.9.001151
Zhang E, Laufer J, Beard P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl Opt. 2008;47(4):561-577. doi:10.1364/AO.47.000561
Spirou GM, Oraevsky AA, Alex Vitkin I, Whelan WM. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics. Phys Med Biol. 2005;50(14):N141-53. doi:10.1088/0031-9155/50/14/N01
Nguyen CD, Edwards SA, Iorizzo TW, et al. Investigation of silk as a phantom material for ultrasound and photoacoustic imaging. Photoacoustics. 2022;28:100416. doi:10.1016/j.pacs.2022.100416
Cabrelli LC, Grillo FW, Sampaio DRT, Carneiro AAO, Pavan TZ. Acoustic and elastic properties of glycerol in oil-based gel phantoms. Ultrasound Med Biol. 2017;43(9):2086-2094. doi:10.1016/j.ultrasmedbio.2017.05.010
Cabrelli LC, Uliana JH, Da Cruz LB Jr, Bachmann L, Carneiro AAO, Pavan TZ. Glycerol-in-SEBS gel as a material to manufacture stable wall-less vascular phantom for ultrasound and photoacoustic imaging. Biomed Phys Eng Express. 2021;7(6):065015. doi:10.1088/2057-1976/ac24d6
Hacker L, Joseph J, Ivory AM, et al. A copolymer-in-oil tissue-mimicking material with tuneable acoustic and optical characteristics for photoacoustic imaging phantoms. IEEE Trans Med Imaging. 2021;40(12):3593-3603. doi:10.1109/tmi.2021.3090857
Bohndiek S. Addressing photoacoustics standards. Nat Photonics. 2019;13(5):298-298. doi:10.1038/s41566-019-0417-3
Zhang F, Zhang H, Zhao H, et al. Design and fabrication of a personalized anthropomorphic phantom using 3D printing and tissue equivalent materials. Quant Imaging Med Surg. 2019;9(1):94-100. doi:10.21037/qims.2018.08.01
Ruiz AJ, Wu M, LaRochelle EPM, et al. Indocyanine green matching phantom for fluorescence-guided surgery imaging system characterization and performance assessment. J Biomed Opt. 2020;25(05):1-15. doi:10.1117/1.jbo.25.5.056003
LaRochelle EPM, Streeter SS, Littler EA, Ruiz AJ. 3D-Printed Tumor phantoms for assessment of in vivo fluorescence imaging analysis methods. Mol Imaging Biol. 2023;25(1):212-220. doi:10.1007/s11307-022-01783-5
Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45(9):e740-e760. doi:10.1002/mp.13058
Lascaud J, Dash P, Schnürle K, et al. Fabrication and characterization of a multimodal 3D printed mouse phantom for ionoacoustic quality assurance in image-guided pre-clinical proton radiation research. Phys Med Biol. 2022;67(20):205001. doi:10.1088/1361-6560/ac9031
Dantuma M, Kruitwagen S, Ortega-Julia J, Pompe van Meerdervoort RP, Manohar S. Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom. J Biomed Opt. 2021;26(03):036003. doi:10.1117/1.jbo.26.3.036003
Dantuma M, van Dommelen R, Manohar S. Semi-anthropomorphic photoacoustic breast phantom. Biomed Opt Express. 2019;10(11):5921. doi:10.1364/boe.10.005921
Quarto G, Pifferi A, Bargigia I, Farina A, Cubeddu R, Taroni P. Recipes to make organic phantoms for diffusive optical spectroscopy. Appl Opt. 2013;52(11):2494-2502. doi:10.1364/AO.52.002494
Dogdas B, Stout D, Chatziioannou AF, Leahy RM. Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol. 2007;52(3):577-587. doi:10.1088/0031-9155/52/3/003
Bohndiek SE, Cox B, Joseph J, et al. IPASC: a community-driven consensus-based initiative towards standardisation in photoacoustic imaging. IEEE International Ultrasonics Symposium, IUS. Vol 2020. IEEE; 2020. doi:10.1109/IUS46767.2020.9251362
AIUM Technical Standards Committee. Methods for specifying acoustic properties of tissue mimicking phantoms and objects. American Institute of Ultrasound in Medicine; 1995;35(12):1995-2006
Liu Y, Maruvada S. Development and characterization of polyurethane-based tissue and blood mimicking materials for high intensity therapeutic ultrasound. J Acoust Soc Am. 2022;151(5):3043-3051. doi:10.1121/10.0010385
Sachse W, Pao YH. On the determination of phase and group velocities of dispersive waves in solids. J Appl Phys. 1978;49(8):4320-4327. doi:10.1063/1.325484
Mobley J, Marsh JN, Hall CS, Hughes MS, Brandenburger GH, Miller JG. Broadband measurements of phase velocity in Albunex® suspensions. J Acoust Soc Am. 1998;103(4):2145-2153. doi:10.1121/1.421360
Rajagopal S, Sadhoo N, Zeqiri B. Reference characterisation of sound speed and attenuation of the IEC agar-based tissue-mimicking material up to a frequency of 60 mhz. Ultrasound Med Biol. 2015;41(1):317-333. doi:10.1016/j.ultrasmedbio.2014.04.018
Raymond JL, Cleveland RO, Roy RA. HIFU-induced changes in optical scattering and absorption of tissue over nine orders of thermal dose. Phys Med Biol. 2018;63(24):245001. doi:10.1088/1361-6560/aaed69
Prahl SA, van Gemert MJC, Welch AJ. Determining the optical properties of turbid media by using the adding-doubling method. Appl Opt. 1993;32(4):559. doi:10.1364/ao.32.000559
Needles A, Heinmiller A, Sun J, et al. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(5):888-897. doi:10.1109/TUFFC.2013.2646
Betzig E. Proposed method for molecular optical imaging. Opt Lett. 1995;20(3):237-239. doi:10.1364/ol.20.000237
Luke GP, Nam SY, Emelianov SY. Optical wavelength selection for improved spectroscopic photoacoustic imaging. Photoacoustics. 2013;1(2):36-42. doi:10.1016/j.pacs.2013.08.001
Duck FA. Physical Properties of Tissue: A Comprehensive Reference Book. Vol 18. Academic Press; 1990.
Sandell JL, Zhu TC. A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics. 2011;4(11-12):773-787. doi:10.1002/jbio.201100062
Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37-61. doi:10.1088/0031-9155/58/11/R37
Cox B, Laufer JG, Arridge SR, Beard PC. Quantitative spectroscopic photoacoustic imaging: a review. J Biomed Opt. 2012;17(6):061202. doi:10.1117/1.jbo.17.6.061202
Tzoumas S, Deliolanis N, Morscher S, Ntziachristos V. Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans Med Imaging. 2014;33(1):48-60. doi:10.1109/TMI.2013.2279994
Yao J, Wang LV. Recent progress in photoacoustic molecular imaging. Curr Opin Chem Biol. 2018;45:104-112. doi:10.1016/j.cbpa.2018.03.016
Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging. Nat Methods. 2016;13(8):639-650. doi:10.1038/nmeth.3929
Grasso V, Willumeit-Römer R, Jose J. Superpixel spectral unmixing framework for the volumetric assessment of tissue chromophores: a photoacoustic data-driven approach. Photoacoustics. 2022;26:100367. doi:10.1016/j.pacs.2022.100367
Tavakolian P, Todd R, Kosik I, et al. Development of a neonatal skull phantom for photoacoustic imaging. Photons Plus Ultrasound: Imaging and Sensing. SPIE; 2013:2013. doi:10.1117/12.2005372

Auteurs

Valeria Grasso (V)

FUJIFILM VisualSonics, Amsterdam, The Netherlands.
Institute for Materials Science, Faculty of Engineering, Christian-Albrecht University of Kiel, Kiel, Germany.

Jason L Raymond (JL)

Department of Engineering Science, University of Oxford, Oxford, UK.

Regine Willumeit-Römer (R)

Institute for Materials Science, Faculty of Engineering, Christian-Albrecht University of Kiel, Kiel, Germany.
Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, Geesthacht, Germany.

James Joseph (J)

School of Science and Engineering, University of Dundee, Dundee, UK.
Centre for Medical Engineering and Technology, University of Dundee, Dundee, UK.

Jithin Jose (J)

FUJIFILM VisualSonics, Amsterdam, The Netherlands.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH