A novel auxin-inducible degron system for rapid, cell cycle-specific targeted proteolysis.
Journal
Cell death and differentiation
ISSN: 1476-5403
Titre abrégé: Cell Death Differ
Pays: England
ID NLM: 9437445
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
22
11
2022
accepted:
03
07
2023
revised:
02
06
2023
pmc-release:
01
09
2024
medline:
8
9
2023
pubmed:
4
8
2023
entrez:
3
8
2023
Statut:
ppublish
Résumé
The discrimination of protein biological functions in different phases of the cell cycle is limited by the lack of experimental approaches that do not require pre-treatment with compounds affecting the cell cycle progression. Therefore, potential cycle-specific biological functions of a protein of interest could be biased by the effects of cell treatments. The OsTIR1/auxin-inducible degron (AID) system allows "on demand" selective and reversible protein degradation upon exposure to the phytohormone auxin. In the current format, this technology does not allow to study the effect of acute protein depletion selectively in one phase of the cell cycle, as auxin similarly affects all the treated cells irrespectively of their proliferation status. Therefore, the AID system requires coupling with cell synchronization techniques, which can alter the basal biological status of the studied cell population, as with previously available approaches. Here, we introduce a new AID system to Regulate OsTIR1 Levels based on the Cell Cycle Status (ROLECCS system), which induces proteolysis of both exogenously transfected and endogenous gene-edited targets in specific phases of the cell cycle. We validated the ROLECCS technology by down regulating the protein levels of TP53, one of the most studied tumor suppressor genes, with a widely known role in cell cycle progression. By using our novel tool, we observed that TP53 degradation is associated with increased number of micronuclei, and this phenotype is specifically achieved when TP53 is lost in S/G
Identifiants
pubmed: 37537305
doi: 10.1038/s41418-023-01191-4
pii: 10.1038/s41418-023-01191-4
pmc: PMC10482871
doi:
Substances chimiques
Indoleacetic Acids
0
Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2078-2091Subventions
Organisme : NCI NIH HHS
ID : R35 CA197706
Pays : United States
Organisme : NIH HHS
ID : K01 OD031811
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016058
Pays : United States
Informations de copyright
© 2023. The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare.
Références
Schafer KA. The cell cycle: a review. Vet Pathol. 1998;35:461–78.
pubmed: 9823588
doi: 10.1177/030098589803500601
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. An overview of the cell cycle. 2002.
Sclafani RA, Holzen TM. Cell cycle regulation of DNA replication. Annu Rev Genet. 2007;41:237–80.
pubmed: 17630848
pmcid: 2292467
doi: 10.1146/annurev.genet.41.110306.130308
Takeda DY, Dutta A. DNA replication and progression through S phase. Oncogene 2005;24:2827–43.
pubmed: 15838518
doi: 10.1038/sj.onc.1208616
Lew D Cell Cycle. In: Encyclopedia of Genetics. Elsevier, 2001, pp 286–96.
Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.
pubmed: 12814430
pmcid: 6496723
doi: 10.1046/j.1365-2184.2003.00266.x
Güttinger S, Laurell E, Kutay U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol. 2009;10:178–91.
pubmed: 19234477
doi: 10.1038/nrm2641
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol. 2020;21:151–66.
pubmed: 32034394
doi: 10.1038/s41580-019-0208-1
Smoyer CJ, Jaspersen SL. Breaking down the wall: the nuclear envelope during mitosis. Curr Opin Cell Biol. 2014;26:1–9.
pubmed: 24529240
doi: 10.1016/j.ceb.2013.08.002
Salina D, Enarson P, Rattner JB, Burke B. Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J Cell Biol. 2003;162:991–1001.
pubmed: 12963708
pmcid: 2172838
doi: 10.1083/jcb.200304080
Raemaekers T, Ribbeck K, Beaudouin J, Annaert W, Van Camp M, Stockmans I, et al. NuSAP, a novel microtubule-associated protein involved in mitotic spindle organization. J Cell Biol. 2003;162:1017–29.
pubmed: 12963707
pmcid: 2172854
doi: 10.1083/jcb.200302129
LeBrasseur N. When nuclear proteins go mitotic. J Cell Biol. 2003;162:958–9.
pmcid: 2248425
Chao HX, Poovey CE, Privette AA, Grant GD, Chao HY, Cook JG, et al. Orchestration of DNA damage checkpoint dynamics across the human cell cycle. Cell Syst. 2017;5:445–459.e5.
pubmed: 29102360
pmcid: 5700845
doi: 10.1016/j.cels.2017.09.015
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Microtubule dynamics and motor proteins during Mitosis. 2000.
Schorl C, Sedivy JM. Analysis of cell cycle phases and progression in cultured mammalian cells. Methods. 2007;41:143–50.
pubmed: 17189856
pmcid: 1828876
doi: 10.1016/j.ymeth.2006.07.022
Uzbekov RE. Analysis of the cell cycle and a method employing synchronized cells for study of protein expression at various stages of the cell cycle. Biochem (Mosc). 2004;69:485–96.
doi: 10.1023/B:BIRY.0000029845.11184.30
Bittmann J, Grigaitis R, Galanti L, Amarell S, Wilfling F, Matos J et al. An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases. eLife 2020; 9. https://doi.org/10.7554/ELIFE.52459 .
Karras GI, Jentsch S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell. 2010;141:255–67.
pubmed: 20403322
doi: 10.1016/j.cell.2010.02.028
Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell. 2011;147:1040–53.
pubmed: 22118461
pmcid: 3478091
doi: 10.1016/j.cell.2011.10.025
Zielke N, Edgar BA. FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip Rev: Dev Biol. 2015;4:469–87.
pubmed: 25827130
doi: 10.1002/wdev.189
Saitou T, Imamura T. Quantitative imaging with Fucci and mathematics to uncover temporal dynamics of cell cycle progression. Dev, Growth Differ. 2016;58:6–15.
pubmed: 26667991
doi: 10.1111/dgd.12252
Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132:487–98.
pubmed: 18267078
doi: 10.1016/j.cell.2007.12.033
Vodermaier HC APC/C and SCF: Controlling each other and the cell cycle. Curr Biol. 2004; 14. https://doi.org/10.1016/j.cub.2004.09.020 .
Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature. 2004;428:194–8.
pubmed: 15014503
doi: 10.1038/nature02381
Benmaamar R, Pagano M. Involvement of the SCF complex in the control of Cdh1 degradation in S-phase. Cell Cycle. 2005;4:1230–2.
pubmed: 16123585
doi: 10.4161/cc.4.9.2048
Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature. 2000;404:625–8.
pubmed: 10766248
doi: 10.1038/35007110
Sakaue-Sawano A, Yo M, Komatsu N, Hiratsuka T, Kogure T, Hoshida T, et al. Genetically encoded tools for optical dissection of the mammalian cell cycle. Mol Cell. 2017;68:626–640.e5.
pubmed: 29107535
doi: 10.1016/j.molcel.2017.10.001
Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell. 2017;169:930–944.e22.
pubmed: 28525758
pmcid: 5538188
doi: 10.1016/j.cell.2017.05.004
Bajar BT, Lam AJ, Badiee RK, Oh YH, Chu J, Zhou XX, et al. Fluorescent indicators for simultaneous reporting of all four cell cycle phases. Nat Methods. 2016;13:993–6.
pubmed: 27798610
pmcid: 5548384
doi: 10.1038/nmeth.4045
Abe T, Sakaue-Sawano A, Kiyonari H, Shioi G, Inoue KI, Horiuchi T, et al. Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter. Dev (Camb). 2013;140:237–46.
doi: 10.1242/dev.084111
Spencer SL, Cappell SD, Tsai F-C, Overton KW, Wang CL, Meyer T. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell. 2013;155:369–83.
pubmed: 24075009
pmcid: 4001917
doi: 10.1016/j.cell.2013.08.062
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44.
pubmed: 32572269
doi: 10.1038/s41587-020-0561-9
Ashfaq MA, Dinesh Kumar V, Soma Sekhar Reddy P, Anil Kumar C, Sai Kumar K, Narasimha Rao N, et al. Post-transcriptional gene silencing: basic concepts and applications. J Biosci. 2020;45:1–10.
doi: 10.1007/s12038-020-00098-3
Kallunki T, Barisic M, Jäättelä M, Liu B. How to choose the right inducible gene expression system for mammalian studies? Cells. 2019; 8. https://doi.org/10.3390/cells8080796 .
Yesbolatova A, Saito Y, Kitamoto N, Makino-Itou H, Ajima R, Nakano R, et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun. 2020;11:1–13.
doi: 10.1038/s41467-020-19532-z
Röth S, Fulcher LJ, Sapkota GP. Advances in targeted degradation of endogenous proteins. Cell Mol Life Sci. 2019;76:2761–77.
pubmed: 31030225
pmcid: 6588652
doi: 10.1007/s00018-019-03112-6
Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 2016;15:210–8.
pubmed: 27052166
doi: 10.1016/j.celrep.2016.03.001
Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51.
pubmed: 10485649
doi: 10.1016/S1074-7613(00)80089-8
Kubota T, Nishimura K, Kanemaki MT, Donaldson AD. The Elg1 replication factor c-like complex functions in PCNA unloading during DNA replication. Mol Cell. 2013;50:273–80.
pubmed: 23499004
doi: 10.1016/j.molcel.2013.02.012
Hoffmann S, Fachinetti D. Real-time de novo deposition of centromeric histone-associated proteins using the auxin-inducible degradation system. In: Methods Mol Biol. Humana Press Inc., 2018, pp 223-41.
Lai S-L, Perng R-P, Hwang J. p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci. 2000;7:64–70.
pubmed: 10644891
doi: 10.1007/BF02255920
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
pubmed: 24157548
pmcid: 3969860
doi: 10.1038/nprot.2013.143
Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 2016;14:1555–66.
pubmed: 26854237
doi: 10.1016/j.celrep.2016.01.019
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90:1103–63.
pubmed: 20664080
doi: 10.1152/physrev.00038.2009
Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003;60:523–33.
pubmed: 12536251
doi: 10.1007/s00253-002-1158-6
Yesbolatova A, Saito Y, Kanemaki MT. Constructing auxin-inducible degron mutants using an all-in-one vector. Pharmaceuticals 2020; 13. https://doi.org/10.3390/ph13050103 .
Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, Lee KY, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE. 2011;6:e18556.
pubmed: 21602908
pmcid: 3084703
doi: 10.1371/journal.pone.0018556
Liu E, Li X, Yan F, Zhao Q, Wu X. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem. 2004;279:17283–8.
pubmed: 15004027
doi: 10.1074/jbc.C300549200
Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci USA. 2006;103:10660.
pubmed: 16818887
pmcid: 1502288
doi: 10.1073/pnas.0600447103
Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275–83.
pubmed: 17380161
doi: 10.1038/nrm2147
Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell 2017;170:1062–78.
pubmed: 28886379
pmcid: 5743327
doi: 10.1016/j.cell.2017.08.028
Levine AJ p53: 800 million years of evolution and 40 years of discovery. https://doi.org/10.1038/s41568-020-0262-1 .
Huang L, Pike D, Sleat DE, Nanda V, Lobel P. Potential pitfalls and solutions for use of fluorescent fusion proteins to study the lysosome. PLoS ONE 2014; 9. https://doi.org/10.1371/journal.pone.0088893 .
Yesbolatova A, Natsume T, Hayashi KI, Kanemaki MT. Generation of conditional auxin-inducible degron (AID) cells and tight control of degron-fused proteins using the degradation inhibitor auxinole. Methods. 2019;164–165:73–80.
pubmed: 31026591
doi: 10.1016/j.ymeth.2019.04.010
Li S, Prasanna X, Salo VT, Vattulainen I, Ikonen E. An efficient auxin-inducible degron system with low basal degradation in human cells. Nat Methods. 2019;16:866–9.
pubmed: 31451765
doi: 10.1038/s41592-019-0512-x
Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212.
pubmed: 30538286
doi: 10.1038/s41418-018-0246-9
Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.
pubmed: 1614522
doi: 10.1038/358015a0
Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell. 2013;154:47–60.
pubmed: 23827674
pmcid: 3749778
doi: 10.1016/j.cell.2013.06.007
Salazar AM, Sordo M, Ostrosky-Wegman P. Relationship between micronuclei formation and p53 induction. Mutat Res. 2009;672:124–8.
pubmed: 19041731
doi: 10.1016/j.mrgentox.2008.10.015
Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol. 2010;188:369–81.
pubmed: 20123995
pmcid: 2819684
doi: 10.1083/jcb.200905057
Kakoti S, Yamauchi M, Gu W, Kato R, Yasuhara T, Hagiwara Y, et al. p53 deficiency augments nucleolar instability after ionizing irradiation. Oncol Rep. 2019;42:2293–302.
pubmed: 31578593
pmcid: 6826308
Kadonaga JT. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell. 2004;116:247–57.
pubmed: 14744435
doi: 10.1016/S0092-8674(03)01078-X
Lambrus BG, Moyer TC, Holland AJ. Applying the auxin-inducible degradation system for rapid protein depletion in mammalian cells. In: Methods Cell Biol. Academic Press Inc., 2018, pp 107–35.
Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods. 2009;6:917–22.
pubmed: 19915560
doi: 10.1038/nmeth.1401
Grant GD, Kedziora KM, Limas JC, Cook JG, Purvis JE. Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI. Cell Cycle (Georget, Tex). 2018;17:2496–516.
doi: 10.1080/15384101.2018.1547001