A novel auxin-inducible degron system for rapid, cell cycle-specific targeted proteolysis.


Journal

Cell death and differentiation
ISSN: 1476-5403
Titre abrégé: Cell Death Differ
Pays: England
ID NLM: 9437445

Informations de publication

Date de publication:
09 2023
Historique:
received: 22 11 2022
accepted: 03 07 2023
revised: 02 06 2023
pmc-release: 01 09 2024
medline: 8 9 2023
pubmed: 4 8 2023
entrez: 3 8 2023
Statut: ppublish

Résumé

The discrimination of protein biological functions in different phases of the cell cycle is limited by the lack of experimental approaches that do not require pre-treatment with compounds affecting the cell cycle progression. Therefore, potential cycle-specific biological functions of a protein of interest could be biased by the effects of cell treatments. The OsTIR1/auxin-inducible degron (AID) system allows "on demand" selective and reversible protein degradation upon exposure to the phytohormone auxin. In the current format, this technology does not allow to study the effect of acute protein depletion selectively in one phase of the cell cycle, as auxin similarly affects all the treated cells irrespectively of their proliferation status. Therefore, the AID system requires coupling with cell synchronization techniques, which can alter the basal biological status of the studied cell population, as with previously available approaches. Here, we introduce a new AID system to Regulate OsTIR1 Levels based on the Cell Cycle Status (ROLECCS system), which induces proteolysis of both exogenously transfected and endogenous gene-edited targets in specific phases of the cell cycle. We validated the ROLECCS technology by down regulating the protein levels of TP53, one of the most studied tumor suppressor genes, with a widely known role in cell cycle progression. By using our novel tool, we observed that TP53 degradation is associated with increased number of micronuclei, and this phenotype is specifically achieved when TP53 is lost in S/G

Identifiants

pubmed: 37537305
doi: 10.1038/s41418-023-01191-4
pii: 10.1038/s41418-023-01191-4
pmc: PMC10482871
doi:

Substances chimiques

Indoleacetic Acids 0
Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

2078-2091

Subventions

Organisme : NCI NIH HHS
ID : R35 CA197706
Pays : United States
Organisme : NIH HHS
ID : K01 OD031811
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016058
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare.

Références

Schafer KA. The cell cycle: a review. Vet Pathol. 1998;35:461–78.
pubmed: 9823588 doi: 10.1177/030098589803500601
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. An overview of the cell cycle. 2002.
Sclafani RA, Holzen TM. Cell cycle regulation of DNA replication. Annu Rev Genet. 2007;41:237–80.
pubmed: 17630848 pmcid: 2292467 doi: 10.1146/annurev.genet.41.110306.130308
Takeda DY, Dutta A. DNA replication and progression through S phase. Oncogene 2005;24:2827–43.
pubmed: 15838518 doi: 10.1038/sj.onc.1208616
Lew D Cell Cycle. In: Encyclopedia of Genetics. Elsevier, 2001, pp 286–96.
Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.
pubmed: 12814430 pmcid: 6496723 doi: 10.1046/j.1365-2184.2003.00266.x
Güttinger S, Laurell E, Kutay U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol. 2009;10:178–91.
pubmed: 19234477 doi: 10.1038/nrm2641
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol. 2020;21:151–66.
pubmed: 32034394 doi: 10.1038/s41580-019-0208-1
Smoyer CJ, Jaspersen SL. Breaking down the wall: the nuclear envelope during mitosis. Curr Opin Cell Biol. 2014;26:1–9.
pubmed: 24529240 doi: 10.1016/j.ceb.2013.08.002
Salina D, Enarson P, Rattner JB, Burke B. Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J Cell Biol. 2003;162:991–1001.
pubmed: 12963708 pmcid: 2172838 doi: 10.1083/jcb.200304080
Raemaekers T, Ribbeck K, Beaudouin J, Annaert W, Van Camp M, Stockmans I, et al. NuSAP, a novel microtubule-associated protein involved in mitotic spindle organization. J Cell Biol. 2003;162:1017–29.
pubmed: 12963707 pmcid: 2172854 doi: 10.1083/jcb.200302129
LeBrasseur N. When nuclear proteins go mitotic. J Cell Biol. 2003;162:958–9.
pmcid: 2248425
Chao HX, Poovey CE, Privette AA, Grant GD, Chao HY, Cook JG, et al. Orchestration of DNA damage checkpoint dynamics across the human cell cycle. Cell Syst. 2017;5:445–459.e5.
pubmed: 29102360 pmcid: 5700845 doi: 10.1016/j.cels.2017.09.015
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Microtubule dynamics and motor proteins during Mitosis. 2000.
Schorl C, Sedivy JM. Analysis of cell cycle phases and progression in cultured mammalian cells. Methods. 2007;41:143–50.
pubmed: 17189856 pmcid: 1828876 doi: 10.1016/j.ymeth.2006.07.022
Uzbekov RE. Analysis of the cell cycle and a method employing synchronized cells for study of protein expression at various stages of the cell cycle. Biochem (Mosc). 2004;69:485–96.
doi: 10.1023/B:BIRY.0000029845.11184.30
Bittmann J, Grigaitis R, Galanti L, Amarell S, Wilfling F, Matos J et al. An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases. eLife 2020; 9. https://doi.org/10.7554/ELIFE.52459 .
Karras GI, Jentsch S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell. 2010;141:255–67.
pubmed: 20403322 doi: 10.1016/j.cell.2010.02.028
Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell. 2011;147:1040–53.
pubmed: 22118461 pmcid: 3478091 doi: 10.1016/j.cell.2011.10.025
Zielke N, Edgar BA. FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip Rev: Dev Biol. 2015;4:469–87.
pubmed: 25827130 doi: 10.1002/wdev.189
Saitou T, Imamura T. Quantitative imaging with Fucci and mathematics to uncover temporal dynamics of cell cycle progression. Dev, Growth Differ. 2016;58:6–15.
pubmed: 26667991 doi: 10.1111/dgd.12252
Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132:487–98.
pubmed: 18267078 doi: 10.1016/j.cell.2007.12.033
Vodermaier HC APC/C and SCF: Controlling each other and the cell cycle. Curr Biol. 2004; 14. https://doi.org/10.1016/j.cub.2004.09.020 .
Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature. 2004;428:194–8.
pubmed: 15014503 doi: 10.1038/nature02381
Benmaamar R, Pagano M. Involvement of the SCF complex in the control of Cdh1 degradation in S-phase. Cell Cycle. 2005;4:1230–2.
pubmed: 16123585 doi: 10.4161/cc.4.9.2048
Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature. 2000;404:625–8.
pubmed: 10766248 doi: 10.1038/35007110
Sakaue-Sawano A, Yo M, Komatsu N, Hiratsuka T, Kogure T, Hoshida T, et al. Genetically encoded tools for optical dissection of the mammalian cell cycle. Mol Cell. 2017;68:626–640.e5.
pubmed: 29107535 doi: 10.1016/j.molcel.2017.10.001
Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell. 2017;169:930–944.e22.
pubmed: 28525758 pmcid: 5538188 doi: 10.1016/j.cell.2017.05.004
Bajar BT, Lam AJ, Badiee RK, Oh YH, Chu J, Zhou XX, et al. Fluorescent indicators for simultaneous reporting of all four cell cycle phases. Nat Methods. 2016;13:993–6.
pubmed: 27798610 pmcid: 5548384 doi: 10.1038/nmeth.4045
Abe T, Sakaue-Sawano A, Kiyonari H, Shioi G, Inoue KI, Horiuchi T, et al. Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter. Dev (Camb). 2013;140:237–46.
doi: 10.1242/dev.084111
Spencer SL, Cappell SD, Tsai F-C, Overton KW, Wang CL, Meyer T. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell. 2013;155:369–83.
pubmed: 24075009 pmcid: 4001917 doi: 10.1016/j.cell.2013.08.062
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44.
pubmed: 32572269 doi: 10.1038/s41587-020-0561-9
Ashfaq MA, Dinesh Kumar V, Soma Sekhar Reddy P, Anil Kumar C, Sai Kumar K, Narasimha Rao N, et al. Post-transcriptional gene silencing: basic concepts and applications. J Biosci. 2020;45:1–10.
doi: 10.1007/s12038-020-00098-3
Kallunki T, Barisic M, Jäättelä M, Liu B. How to choose the right inducible gene expression system for mammalian studies? Cells. 2019; 8. https://doi.org/10.3390/cells8080796 .
Yesbolatova A, Saito Y, Kitamoto N, Makino-Itou H, Ajima R, Nakano R, et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun. 2020;11:1–13.
doi: 10.1038/s41467-020-19532-z
Röth S, Fulcher LJ, Sapkota GP. Advances in targeted degradation of endogenous proteins. Cell Mol Life Sci. 2019;76:2761–77.
pubmed: 31030225 pmcid: 6588652 doi: 10.1007/s00018-019-03112-6
Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 2016;15:210–8.
pubmed: 27052166 doi: 10.1016/j.celrep.2016.03.001
Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51.
pubmed: 10485649 doi: 10.1016/S1074-7613(00)80089-8
Kubota T, Nishimura K, Kanemaki MT, Donaldson AD. The Elg1 replication factor c-like complex functions in PCNA unloading during DNA replication. Mol Cell. 2013;50:273–80.
pubmed: 23499004 doi: 10.1016/j.molcel.2013.02.012
Hoffmann S, Fachinetti D. Real-time de novo deposition of centromeric histone-associated proteins using the auxin-inducible degradation system. In: Methods Mol Biol. Humana Press Inc., 2018, pp 223-41.
Lai S-L, Perng R-P, Hwang J. p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci. 2000;7:64–70.
pubmed: 10644891 doi: 10.1007/BF02255920
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
pubmed: 24157548 pmcid: 3969860 doi: 10.1038/nprot.2013.143
Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 2016;14:1555–66.
pubmed: 26854237 doi: 10.1016/j.celrep.2016.01.019
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90:1103–63.
pubmed: 20664080 doi: 10.1152/physrev.00038.2009
Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003;60:523–33.
pubmed: 12536251 doi: 10.1007/s00253-002-1158-6
Yesbolatova A, Saito Y, Kanemaki MT. Constructing auxin-inducible degron mutants using an all-in-one vector. Pharmaceuticals 2020; 13. https://doi.org/10.3390/ph13050103 .
Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, Lee KY, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE. 2011;6:e18556.
pubmed: 21602908 pmcid: 3084703 doi: 10.1371/journal.pone.0018556
Liu E, Li X, Yan F, Zhao Q, Wu X. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem. 2004;279:17283–8.
pubmed: 15004027 doi: 10.1074/jbc.C300549200
Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci USA. 2006;103:10660.
pubmed: 16818887 pmcid: 1502288 doi: 10.1073/pnas.0600447103
Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275–83.
pubmed: 17380161 doi: 10.1038/nrm2147
Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell 2017;170:1062–78.
pubmed: 28886379 pmcid: 5743327 doi: 10.1016/j.cell.2017.08.028
Levine AJ p53: 800 million years of evolution and 40 years of discovery. https://doi.org/10.1038/s41568-020-0262-1 .
Huang L, Pike D, Sleat DE, Nanda V, Lobel P. Potential pitfalls and solutions for use of fluorescent fusion proteins to study the lysosome. PLoS ONE 2014; 9. https://doi.org/10.1371/journal.pone.0088893 .
Yesbolatova A, Natsume T, Hayashi KI, Kanemaki MT. Generation of conditional auxin-inducible degron (AID) cells and tight control of degron-fused proteins using the degradation inhibitor auxinole. Methods. 2019;164–165:73–80.
pubmed: 31026591 doi: 10.1016/j.ymeth.2019.04.010
Li S, Prasanna X, Salo VT, Vattulainen I, Ikonen E. An efficient auxin-inducible degron system with low basal degradation in human cells. Nat Methods. 2019;16:866–9.
pubmed: 31451765 doi: 10.1038/s41592-019-0512-x
Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212.
pubmed: 30538286 doi: 10.1038/s41418-018-0246-9
Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.
pubmed: 1614522 doi: 10.1038/358015a0
Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell. 2013;154:47–60.
pubmed: 23827674 pmcid: 3749778 doi: 10.1016/j.cell.2013.06.007
Salazar AM, Sordo M, Ostrosky-Wegman P. Relationship between micronuclei formation and p53 induction. Mutat Res. 2009;672:124–8.
pubmed: 19041731 doi: 10.1016/j.mrgentox.2008.10.015
Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol. 2010;188:369–81.
pubmed: 20123995 pmcid: 2819684 doi: 10.1083/jcb.200905057
Kakoti S, Yamauchi M, Gu W, Kato R, Yasuhara T, Hagiwara Y, et al. p53 deficiency augments nucleolar instability after ionizing irradiation. Oncol Rep. 2019;42:2293–302.
pubmed: 31578593 pmcid: 6826308
Kadonaga JT. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell. 2004;116:247–57.
pubmed: 14744435 doi: 10.1016/S0092-8674(03)01078-X
Lambrus BG, Moyer TC, Holland AJ. Applying the auxin-inducible degradation system for rapid protein depletion in mammalian cells. In: Methods Cell Biol. Academic Press Inc., 2018, pp 107–35.
Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods. 2009;6:917–22.
pubmed: 19915560 doi: 10.1038/nmeth.1401
Grant GD, Kedziora KM, Limas JC, Cook JG, Purvis JE. Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI. Cell Cycle (Georget, Tex). 2018;17:2496–516.
doi: 10.1080/15384101.2018.1547001

Auteurs

Marina Capece (M)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.

Anna Tessari (A)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.

Joseph Mills (J)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.

Gian Luca Rampioni Vinciguerra (GLR)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.

Darian Louke (D)

The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.
Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 43210, Columbus, OH, USA.

Chenyu Lin (C)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.

Bryan K McElwain (BK)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.

Wayne O Miles (WO)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.

Vincenzo Coppola (V)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.

Alexander E Davies (AE)

The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.
Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 43210, Columbus, OH, USA.

Dario Palmieri (D)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA. dario.palmieri@osumc.edu.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA. dario.palmieri@osumc.edu.
Gene Editing Shared Resource, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA. dario.palmieri@osumc.edu.

Carlo M Croce (CM)

Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA. carlo.croce@osumc.edu.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA. carlo.croce@osumc.edu.

Articles similaires

Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Detailing organelle division and segregation in Plasmodium falciparum.

Julie M J Verhoef, Cas Boshoven, Felix Evers et al.
1.00
Plasmodium falciparum Mitochondria Apicoplasts Humans Animals
Rhizosphere Glycine max Seeds Soybean Oil Soil Microbiology

Classifications MeSH