The serotonin transporter sustains human brown adipose tissue thermogenesis.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
08 2023
Historique:
received: 21 02 2022
accepted: 12 06 2023
medline: 25 8 2023
pubmed: 4 8 2023
entrez: 3 8 2023
Statut: ppublish

Résumé

Activation of brown adipose tissue (BAT) in humans is a strategy to treat obesity and metabolic disease. Here we show that the serotonin transporter (SERT), encoded by SLC6A4, prevents serotonin-mediated suppression of human BAT function. RNA sequencing of human primary brown and white adipocytes shows that SLC6A4 is highly expressed in human, but not murine, brown adipocytes and BAT. Serotonin decreases uncoupled respiration and reduces uncoupling protein 1 via the 5-HT

Identifiants

pubmed: 37537371
doi: 10.1038/s42255-023-00839-2
pii: 10.1038/s42255-023-00839-2
pmc: PMC10447248
doi:

Substances chimiques

Serotonin 333DO1RDJY
Sertraline QUC7NX6WMB
Serotonin Plasma Membrane Transport Proteins 0
SLC6A4 protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1319-1336

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RE/18/5/34216
Pays : United Kingdom
Organisme : Chief Scientist Office
ID : SCAF/17/02
Pays : United Kingdom

Informations de copyright

© 2023. The Author(s).

Références

McNeill, B. T., Suchacki, K. J. & Stimson, R. H. MECHANISMS IN ENDOCRINOLOGY: Human brown adipose tissue as a therapeutic target: warming up or cooling down? Eur. J. Endocrinol. 184, R243–R259 (2021).
pubmed: 33729178 pmcid: 8111330 doi: 10.1530/EJE-20-1439
Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).
pubmed: 14715917 doi: 10.1152/physrev.00015.2003
Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).
pubmed: 22269323 pmcid: 3266793 doi: 10.1172/JCI60433
Porter, C. et al. Human and mouse brown adipose tissue mitochondria have comparable UCP1 function. Cell Metab. 24, 246–255 (2016).
pubmed: 27508873 pmcid: 5201422 doi: 10.1016/j.cmet.2016.07.004
Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).
pubmed: 19401428 pmcid: 2699872 doi: 10.2337/db09-0530
Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).
pubmed: 19357407 doi: 10.1056/NEJMoa0808949
Cypess, A. M. et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).
pubmed: 25565203 pmcid: 4298351 doi: 10.1016/j.cmet.2014.12.009
McNeill, B. T., Morton, N. M. & Stimson, R. H. Substrate utilization by brown adipose tissue: what’s hot and what’s not? Front. Endocrinol. (Lausanne) 11, 571659 (2020).
pubmed: 33101206 doi: 10.3389/fendo.2020.571659
Chen, K. Y. et al. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 24, 210–222 (2016).
pubmed: 27508870 pmcid: 4981083 doi: 10.1016/j.cmet.2016.07.014
van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).
pubmed: 19357405 doi: 10.1056/NEJMoa0808718
Saari, T. J. et al. Basal and cold-induced fatty acid uptake of human brown adipose tissue is impaired in obesity. Sci. Rep. 10, 14373 (2020).
pubmed: 32873825 pmcid: 7463032 doi: 10.1038/s41598-020-71197-2
Lee, P. et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63, 3686–3698 (2014).
pubmed: 24954193 pmcid: 4207391 doi: 10.2337/db14-0513
Chondronikola, M. et al. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab. 23, 1200–1206 (2016).
pubmed: 27238638 pmcid: 4967557 doi: 10.1016/j.cmet.2016.04.029
Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).
pubmed: 33398160 pmcid: 8461455 doi: 10.1038/s41591-020-1126-7
Hanssen, M. J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).
pubmed: 26147760 doi: 10.1038/nm.3891
Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).
pubmed: 23867622 pmcid: 3726164 doi: 10.1172/JCI67803
O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).
pubmed: 31961826 pmcid: 7190915 doi: 10.1172/JCI131126
Blondin, D. P. et al. Human brown adipocyte thermogenesis is driven by beta2-AR stimulation. Cell Metab. 32, 287–300 (2020).
pubmed: 32755608 doi: 10.1016/j.cmet.2020.07.005
Sidossis, L. & Kajimura, S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J. Clin. Invest. 125, 478–486 (2015).
pubmed: 25642708 pmcid: 4319444 doi: 10.1172/JCI78362
Ramage, L. E. et al. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab. 24, 130–141 (2016).
pubmed: 27411014 pmcid: 4949380 doi: 10.1016/j.cmet.2016.06.011
Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).
pubmed: 26076036 pmcid: 4496292 doi: 10.1038/nm.3881
Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).
pubmed: 25774848 pmcid: 4427356 doi: 10.1038/nm.3819
Tews, D. et al. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol. Cell. Endocrinol. 395, 41–50 (2014).
pubmed: 25102227 doi: 10.1016/j.mce.2014.07.011
Bouwknecht, J. A. et al. Male and female 5-HT(1B) receptor knockout mice have higher body weights than wildtypes. Physiol. Behav. 74, 507–516 (2001).
pubmed: 11790410 doi: 10.1016/S0031-9384(01)00589-3
Tecott, L. H. et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374, 542–546 (1995).
pubmed: 7700379 doi: 10.1038/374542a0
Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).
pubmed: 20647200 doi: 10.1056/NEJMoa0909809
El-Merahbi, R., Loffler, M., Mayer, A. & Sumara, G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 589, 1728–1734 (2015).
pubmed: 26070423 doi: 10.1016/j.febslet.2015.05.054
Oh, C. M. et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat. Commun. 6, 6794 (2015).
pubmed: 25864946 doi: 10.1038/ncomms7794
Crane, J. D. et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 21, 166–172 (2015).
pubmed: 25485911 doi: 10.1038/nm.3766
Yabut, J. M. et al. Genetic deletion of mast cell serotonin synthesis prevents the development of obesity and insulin resistance. Nat. Commun. 11, 463 (2020).
pubmed: 31974364 pmcid: 6978527 doi: 10.1038/s41467-019-14080-7
Cleare, A. et al. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 British Association for Psychopharmacology guidelines. J. Psychopharmacol. 29, 459–525 (2015).
pubmed: 25969470 doi: 10.1177/0269881115581093
Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).
pubmed: 19357406 pmcid: 2859951 doi: 10.1056/NEJMoa0810780
Ouellet, V. et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of
pubmed: 20943785 doi: 10.1210/jc.2010-0989
Croft, H. et al. A placebo-controlled comparison of the antidepressant efficacy and effects on sexual functioning of sustained-release bupropion and sertraline. Clin. Ther. 21, 643–658 (1999).
pubmed: 10363731 doi: 10.1016/S0149-2918(00)88317-4
Weir, G. et al. Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides. Cell Metab. 27, 1348–1355 (2018).
pubmed: 29805098 pmcid: 5988566 doi: 10.1016/j.cmet.2018.04.020
Eddahibi, S. et al. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Invest. 105, 1555–1562 (2000).
pubmed: 10841514 pmcid: 300850 doi: 10.1172/JCI8678
Mercado, C. P. & Kilic, F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Mol. Interv. 10, 231–241 (2010).
pubmed: 20729489 pmcid: 2965611 doi: 10.1124/mi.10.4.6
Blondin, D. P. et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J. Physiol. 593, 701–714 (2015).
pubmed: 25384777 doi: 10.1113/jphysiol.2014.283598
Young, R. L. et al. Augmented capacity for peripheral serotonin release in human obesity. Int. J. Obes. 42, 1880–1889 (2018).
doi: 10.1038/s41366-018-0047-8
Holmes, A., Yang, R. J., Murphy, D. L. & Crawley, J. N. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27, 914–923 (2002).
pubmed: 12464448 doi: 10.1016/S0893-133X(02)00374-3
Holmes, A., Murphy, D. L. & Crawley, J. N. Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl.) 161, 160–167 (2002).
pubmed: 11981596 doi: 10.1007/s00213-002-1024-3
Chen, X., Margolis, K. J., Gershon, M. D., Schwartz, G. J. & Sze, J. Y. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake. PLoS ONE 7, e32511 (2012).
pubmed: 22412882 pmcid: 3297606 doi: 10.1371/journal.pone.0032511
Zha, W., Ho, H. T. B., Hu, T., Hebert, M. F. & Wang, J. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Sci. Rep. 7, 1137 (2017).
pubmed: 28442777 pmcid: 5430688 doi: 10.1038/s41598-017-01291-5
Blardi, P. et al. Serotonin and fluoxetine levels in plasma and platelets after fluoxetine treatment in depressive patients. J. Clin. Psychopharmacol. 22, 131–136 (2002).
pubmed: 11910257 doi: 10.1097/00004714-200204000-00005
Kotzailias, N., Marker, M. & Jilma, B. Early effects of paroxetine on serotonin storage, plasma levels, and urinary excretion: a randomized, double-blind, placebo-controlled trial. J. Clin. Psychopharmacol. 24, 536–539 (2004).
pubmed: 15349011 doi: 10.1097/01.jcp.0000138765.08235.46
Alvarez, J. C. et al. Plasma serotonin level after 1 day of fluoxetine treatment: a biological predictor for antidepressant response? Psychopharmacology (Berl.) 143, 97–101 (1999).
pubmed: 10227085 doi: 10.1007/s002130050924
Garfield, A. S. & Heisler, L. K. Pharmacological targeting of the serotonergic system for the treatment of obesity. J. Physiol. 587, 49–60 (2009).
pubmed: 19029184 doi: 10.1113/jphysiol.2008.164152
Nielsen, J. A., Chapin, D. S., Johnson, J. L. Jr & Torgersen, L. K. Sertraline, a serotonin-uptake inhibitor, reduces food intake and body weight in lean rats and genetically obese mice. Am. J. Clin. Nutr. 55, 185S–189S (1992).
pubmed: 1728832 doi: 10.1093/ajcn/55.1.185s
Raeder, M. B., Bjelland, I., Emil, V. S. & Steen, V. M. Obesity, dyslipidemia, and diabetes with selective serotonin reuptake inhibitors: the Hordaland Health Study. J. Clin. Psychiatry 67, 1974–1982 (2006).
pubmed: 17194277 doi: 10.4088/JCP.v67n1219
Andersohn, F., Schade, R., Suissa, S. & Garbe, E. Long-term use of antidepressants for depressive disorders and the risk of diabetes mellitus. Am. J. Psychiatry 166, 591–598 (2009).
pubmed: 19339356 doi: 10.1176/appi.ajp.2008.08071065
Sumara, G., Sumara, O., Kim, J. K. & Karsenty, G. Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metab. 16, 588–600 (2012).
pubmed: 23085101 pmcid: 3696514 doi: 10.1016/j.cmet.2012.09.014
Choi, W. G. et al. Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity related insulin resistance. J. Clin. Invest. 131, e145331 (2021).
pubmed: 34618686 pmcid: 8631597 doi: 10.1172/JCI145331
Gafoor, R., Booth, H. P. & Gulliford, M. C. Antidepressant utilisation and incidence of weight gain during 10 years’ follow-up: population based cohort study. BMJ 361, k1951 (2018).
pubmed: 29793997 pmcid: 5964332 doi: 10.1136/bmj.k1951
Tatsumi, M., Groshan, K., Blakely, R. D. & Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol. 340, 249–258 (1997).
pubmed: 9537821 doi: 10.1016/S0014-2999(97)01393-9
Anttila, S. A. & Leinonen, E. V. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev. 7, 249–264 (2001).
pubmed: 11607047 pmcid: 6494141 doi: 10.1111/j.1527-3458.2001.tb00198.x
Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).
pubmed: 23519215 pmcid: 3644390 doi: 10.1126/science.1232808
Deshpande, D. A., Theriot, B. S., Penn, R. B. & Walker, J. K. Beta-arrestins specifically constrain beta2-adrenergic receptor signaling and function in airway smooth muscle. FASEB J. 22, 2134–2141 (2008).
pubmed: 18337459 doi: 10.1096/fj.07-102459
Lucaites, V. L., Nelson, D. L., Wainscott, D. B. & Baez, M. Receptor subtype and density determine the coupling repertoire of the 5-HT2 receptor subfamily. Life Sci. 59, 1081–1095 (1996).
pubmed: 8809227 doi: 10.1016/0024-3205(96)00423-7
McCorvy, J. D. et al. Structural determinants of 5-HT(2B) receptor activation and biased agonism. Nat. Struct. Mol. Biol. 25, 787–796 (2018).
pubmed: 30127358 pmcid: 6237183 doi: 10.1038/s41594-018-0116-7
Waku, T. et al. The nuclear receptor PPARgamma individually responds to serotonin- and fatty acid-metabolites. EMBO J. 29, 3395–3407 (2010).
pubmed: 20717101 pmcid: 2957204 doi: 10.1038/emboj.2010.197
Shores, M. M., Pascualy, M., Lewis, N. L., Flatness, D. & Veith, R. C. Short-term sertraline treatment suppresses sympathetic nervous system activity in healthy human subjects. Psychoneuroendocrinology 26, 433–439 (2001).
pubmed: 11259862 doi: 10.1016/S0306-4530(01)00002-6
Din, U. et al. Human brown adipose tissue [
doi: 10.1007/s00259-016-3364-y
Brenner, B. et al. Plasma serotonin levels and the platelet serotonin transporter. J. Neurochem. 102, 206–215 (2007).
pubmed: 17506858 pmcid: 3041643 doi: 10.1111/j.1471-4159.2007.04542.x
Walker, R. F. & Codd, E. E. Neuroimmunomodulatory interactions of norepinephrine and serotonin. J. Neuroimmunol. 10, 41–58 (1985).
pubmed: 3902887 doi: 10.1016/0165-5728(85)90033-5
Kwak, S. H. et al. Association of variations in TPH1 and HTR2B with gestational weight gain and measures of obesity. Obesity (Silver Spring) 20, 233–238 (2012).
pubmed: 21836641 doi: 10.1038/oby.2011.253
Koskensalo, K. et al. Human brown adipose tissue temperature and fat fraction are related to its metabolic activity. J. Clin. Endocrinol. Metab. 102, 1200–1207 (2017).
pubmed: 28323929 doi: 10.1210/jc.2016-3086
Richard, G. et al. High-fructose feeding suppresses cold-stimulated brown adipose tissue glucose uptake independently of changes in thermogenesis and the gut microbiome. Cell Rep. Med. 3, 100742 (2022).
pubmed: 36130480 pmcid: 9512695 doi: 10.1016/j.xcrm.2022.100742
Blondin, D. P. et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes 64, 2388–2397 (2015).
pubmed: 25677914 doi: 10.2337/db14-1651
Sorensen, L. et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem. 287, 43694–43707 (2012).
pubmed: 23086945 pmcid: 3527955 doi: 10.1074/jbc.M112.342212
Daniel, W. A. & Wojcikowski, J. Contribution of lysosomal trapping to the total tissue uptake of psychotropic drugs. Pharmacol. Toxicol. 80, 62–68 (1997).
pubmed: 9060036 doi: 10.1111/j.1600-0773.1997.tb00285.x
Stimson, R. H. et al. Acute physiological effects of glucocorticoids on fuel metabolism in humans are permissive but not direct. Diabetes Obes. Metab. 19, 883–891 (2017).
pubmed: 28177189 pmcid: 5484992 doi: 10.1111/dom.12899
Jorgensen, S., Nielsen, E. O., Peters, D. & Dyhring, T. Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity. J. Neurosci. Methods 169, 168–176 (2008).
pubmed: 18222006 doi: 10.1016/j.jneumeth.2007.12.004
Dai, S. Q. et al. Serotonin regulates osteoblast proliferation and function in vitro. Braz. J. Med. Biol. Res. 47, 759–765 (2014).
pubmed: 25098615 pmcid: 4143203 doi: 10.1590/1414-431X20143565
Vanover, K. E. et al. Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine
pubmed: 16469866 doi: 10.1124/jpet.105.097006
Forbes, I. T., Jones, G. E., Murphy, O. E., Holland, V. & Baxter, G. S. N-(1-methyl-5-indolyl)-N′-(3-methyl-5-isothiazolyl)urea: a novel, high-affinity 5-HT2B receptor antagonist. J. Med. Chem. 38, 855–857 (1995).
pubmed: 7699699 doi: 10.1021/jm00006a001
Deshmukh, A. S. et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab. 30, 963–975 (2019).
pubmed: 31668873 doi: 10.1016/j.cmet.2019.10.001
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
McKinstry, B. et al. Cohort profile: the Scottish Research register SHARE. A register of people interested in research participation linked to NHS data sets. BMJ Open. 7, e013351 (2017).
pubmed: 28148535 pmcid: 5293989 doi: 10.1136/bmjopen-2016-013351

Auteurs

Karla J Suchacki (KJ)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Lynne E Ramage (LE)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

T'ng Choong Kwok (TC)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Alexandra Kelman (A)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Ben T McNeill (BT)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Stewart Rodney (S)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Matthew Keegan (M)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Calum Gray (C)

Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK.

Gillian MacNaught (G)

Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK.
Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK.

Dilip Patel (D)

Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK.
Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK.

Alison M Fletcher (AM)

Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK.
Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK.

Joanna P Simpson (JP)

Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Roderick N Carter (RN)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Robert K Semple (RK)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Natalie Z M Homer (NZM)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Nicholas M Morton (NM)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.

Edwin J R van Beek (EJR)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK.
Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK.

Sonia J Wakelin (SJ)

Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK.

Roland H Stimson (RH)

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK. roland.stimson@ed.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH