Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants?
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
30
01
2023
accepted:
23
06
2023
medline:
21
8
2023
pubmed:
4
8
2023
entrez:
3
8
2023
Statut:
ppublish
Résumé
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular immune receptors that are activated by their direct or indirect interactions with virulence effectors. NLR activation triggers a strong immune response and consequent disease resistance. However, the NLR-driven immune response can be targeted by virulence effectors. It is thus unclear how immune activation can occur concomitantly with virulence effector suppression of immunity. Recent observations suggest that the activation of effector-triggered immunity does not sustain defence gene expression in tissues in contact with the hemi-biotrophic pathogen Pseudomonas syringae pv. tomato. Instead, strong defence was observed on the border of the infection area. This response is reminiscent of localized acquired resistance (LAR). LAR is a strong defence response occurring in a ~2 mm area around cells in contact with the pathogen and probably serves to prevent the spread of pathogens. Here we propose that effector-triggered immunity is essentially a quarantining mechanism to prevent systemic pathogen spread and disease, and that the induction of LAR is a key component of this mechanism.
Identifiants
pubmed: 37537398
doi: 10.1038/s41477-023-01466-1
pii: 10.1038/s41477-023-01466-1
doi:
Substances chimiques
Carrier Proteins
0
Types de publication
Journal Article
Review
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1184-1190Subventions
Organisme : National Science Foundation (NSF)
ID : IOS-1758400
Informations de copyright
© 2023. Springer Nature Limited.
Références
Jones, J. D. G., Vance, R. E. & Dangl, J. L. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395 (2016).
pubmed: 27934708
doi: 10.1126/science.aaf6395
Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).
pubmed: 17108957
doi: 10.1038/nature05286
Laflamme, B. et al. The pan-genome effector-triggered immunity landscape of a host–pathogen interaction. Science 367, 763–768 (2020).
pubmed: 32054757
doi: 10.1126/science.aax4079
Van de Weyer, A. L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272.e14 (2019).
pubmed: 31442410
pmcid: 6709784
doi: 10.1016/j.cell.2019.07.038
Huang, S. et al. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science 377, eabq3297 (2022).
pubmed: 35857645
doi: 10.1126/science.abq3297
Wan, L. et al. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799–803 (2019).
pubmed: 31439793
pmcid: 7045805
doi: 10.1126/science.aax1771
Yu, D. et al. TIR domains of plant immune receptors are 2′,3′-cAMP/cGMP synthetases mediating cell death. Cell 185, 2370–2386.e18 (2022).
pubmed: 35597242
doi: 10.1016/j.cell.2022.04.032
Essuman, K., Milbrandt, J., Dangl, J. L. & Nishimura, M. T. Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science 377, eabo0001 (2022).
pubmed: 35857622
doi: 10.1126/science.abo0001
Jia, A. et al. TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science 377, eabq8180 (2022).
pubmed: 35857644
doi: 10.1126/science.abq8180
Jacob, P. et al. Plant ‘helper’ immune receptors are Ca
pubmed: 34140391
pmcid: 8939002
doi: 10.1126/science.abg7917
Bi, G. et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528–3541.e12 (2021).
pubmed: 33984278
doi: 10.1016/j.cell.2021.05.003
Förderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532–539 (2022).
pubmed: 36163289
pmcid: 9581773
doi: 10.1038/s41586-022-05231-w
Köster, P., DeFalco, T. A. & Zipfel, C. Ca
pubmed: 35560235
pmcid: 9194748
doi: 10.15252/embj.2022110741
Jacob, P. et al. Broader functions of TIR domains in Arabidopsis immunity. Proc. Natl Acad. Sci. USA 120, e2220921120 (2023).
pubmed: 36893276
pmcid: 10242710
doi: 10.1073/pnas.2220921120
Tian, H. et al. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598, 500–503 (2021).
pubmed: 34544113
doi: 10.1038/s41586-021-03987-1
Ngou, B. P. M., Ahn, H. K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110–115 (2021).
pubmed: 33692545
doi: 10.1038/s41586-021-03315-7
Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).
pubmed: 33692546
pmcid: 8016741
doi: 10.1038/s41586-021-03316-6
Pruitt, R. N. et al. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature https://doi.org/10.1038/s41586-021-03829-0 (2021).
Tena, G. PTI and ETI are one. Nat. Plants 7, 1527 (2021).
pubmed: 34907297
doi: 10.1038/s41477-021-01057-y
Wei, H. L., Zhang, W. & Collmer, A. Modular study of the type III effector repertoire in Pseudomonas syringae pv. tomato DC3000 reveals a matrix of effector interplay in pathogenesis. Cell Rep. 23, 1630–1638 (2018).
pubmed: 29742421
doi: 10.1016/j.celrep.2018.04.037
Guo, M., Tian, F., Wamboldt, Y. & Alfano, J. R. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol. Plant. Microbe Interact. 22, 1069–1080 (2009).
pubmed: 19656042
pmcid: 2778199
doi: 10.1094/MPMI-22-9-1069
Ruiz-Bedoya, T., Wang, P. W., Desveaux, D. & Guttman, D. S. Cooperative virulence via the collective action of secreted pathogen effectors. Nat. Microbiol. 8, 640–650 (2023).
pubmed: 36782026
doi: 10.1038/s41564-023-01328-8
Ross, A. F. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14, 329–339 (1961).
pubmed: 13743577
doi: 10.1016/0042-6822(61)90318-X
Bomblies, K. et al. Autoimmune response as a mechanism for a Dobzhansky–Muller-type incompatibility syndrome in plants. PLoS Biol. 5, e236 (2007).
pubmed: 17803357
pmcid: 1964774
doi: 10.1371/journal.pbio.0050236
Calvo-Baltanás, V., Wang, J. & Chae, E. Hybrid incompatibility of the plant immune system: an opposite force to heterosis equilibrating hybrid performances. Front. Plant Sci. 11, 2308 (2021).
doi: 10.3389/fpls.2020.576796
Saile, S. C. et al. Two unequally redundant ‘helper’ immune receptor families mediate Arabidopsis thaliana intracellular ‘sensor’ immune receptor functions. PLoS Biol. 18, e3000783 (2020).
pubmed: 32925907
pmcid: 7514072
doi: 10.1371/journal.pbio.3000783
Cui, H. et al. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. N. Phytol. 213, 1802–1817 (2017).
doi: 10.1111/nph.14302
Kim, N. H., Jacob, P. & Dangl, J. L. Con-Ca
doi: 10.1111/nph.18044
Mcdowell, J. M. et al. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J. 22, 523–529 (2000).
pubmed: 10886772
doi: 10.1046/j.1365-313x.2000.00771.x
Lapin, D. et al. A coevolved EDS1–SAG101–NRG1 module mediates cell death signaling by TIR-domain immune receptors. Plant Cell 31, 2430 (2019).
pubmed: 31311833
pmcid: 6790079
doi: 10.1105/tpc.19.00118
Castel, B. et al. Diverse NLR immune receptors activate defence via the RPW8–NLR NRG1. N. Phytol. 222, 966–980 (2019).
doi: 10.1111/nph.15659
Wu, Z. et al. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. N. Phytol. 222, 938–953 (2019).
doi: 10.1111/nph.15665
Rufián, J. S. et al. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non‐pathogenic Pseudomonas syringae strains. Mol. Plant Pathol. 19, 537–551 (2018).
pubmed: 28120374
doi: 10.1111/mpp.12539
Alvarez, M. E. et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92, 773–784 (1998).
pubmed: 9529253
doi: 10.1016/S0092-8674(00)81405-1
Costet, L. et al. Relationship between localized acquired resistance (LAR) and the hypersensitive response (HR): HR is necessary for LAR to occur and salicylic acid is not sufficient to trigger LAR. Mol. Plant Microbe Interact. 12, 655–662 (1999).
doi: 10.1094/MPMI.1999.12.8.655
Dorey, S. et al. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant Microbe Interact. 10, 646–655 (1997).
doi: 10.1094/MPMI.1997.10.5.646
Ross, A. F. Systemic acquired resistance induced by localized virus infections in plants. Virology 14, 340–358 (1961).
pubmed: 13743578
doi: 10.1016/0042-6822(61)90319-1
Betsuyaku, S. et al. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. Plant Cell Physiol. 59, 8–16 (2018).
pubmed: 29177423
doi: 10.1093/pcp/pcx181
Ghareeb, H. et al. Quantitative hormone signaling output analyses of Arabidopsis thaliana interactions with virulent and avirulent Hyaloperonospora arabidopsidis isolates at single-cell resolution. Front. Plant Sci. 11, 1737 (2020).
doi: 10.3389/fpls.2020.603693
Samac’, D. A. & Shah, D. M. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3, 1063–1072 (1991).
pubmed: 12324582
doi: 10.2307/3869295
Roberts, M., Tang, S., Stallmann, A., Dangl, J. L. & Bonardi, V. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor. PLoS Genet. 9, e1003465 (2013).
pubmed: 23633962
pmcid: 3636237
doi: 10.1371/journal.pgen.1003465
Bonardi, V. et al. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc. Natl Acad. Sci. USA 108, 16463–16468 (2011).
pubmed: 21911370
pmcid: 3182704
doi: 10.1073/pnas.1113726108
Jabs, T., Dietrich, R. A. & Dangl, J. L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853–1856 (1996).
pubmed: 8791589
doi: 10.1126/science.273.5283.1853
Hander, T. et al. Damage on plants activates Ca
pubmed: 30898901
doi: 10.1126/science.aar7486
Zhu, J. et al. Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep. 42, 112676 (2023).
pubmed: 37342910
doi: 10.1016/j.celrep.2023.112676
Salguero-Linares, J. et al. Robust transcriptional indicators of immune cell death revealed by spatiotemporal transcriptome analyses. Mol. Plant 15, 1059–1075 (2022).
pubmed: 35502144
doi: 10.1016/j.molp.2022.04.010
Delannoy, E. et al. Cell specialization and coordination in Arabidopsis leaves upon pathogenic attack revealed by scRNA-seq. Preprint at bioRxiv https://doi.org/10.1101/2023.03.02.530814 (2023).
Liu, X. et al. Dynamic decomposition of transcriptome responses during plant effector-triggered immunity revealed conserved responses in two distinct cell populations. Preprint at bioRxiv https://doi.org/10.1101/2022.12.30.522333 (2022).
Nobori, T. et al. Time-resolved single-cell and spatial gene regulatory atlas of plants under pathogen attack. Preprint at bioRxiv https://doi.org/10.1101/2023.04.10.536170 (2023).
Misas-Villamil, J. C., Kolodziejek, I. & Van Der Hoorn, R. A. L. Pseudomonas syringae colonizes distant tissues in Nicotiana benthamiana through xylem vessels. Plant J. 67, 774–782 (2011).
pubmed: 21554458
doi: 10.1111/j.1365-313X.2011.04632.x
Liu, Y., Schiff, M., Marathe, R. & Dinesh-Kumar, S. P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415–429 (2002).
pubmed: 12028572
doi: 10.1046/j.1365-313X.2002.01297.x
Lepiniec, L. et al. Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57, 405–430 (2006).
pubmed: 16669768
doi: 10.1146/annurev.arplant.57.032905.105252
Wright, K. M. et al. Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123, 1375 (2000).
pubmed: 10938355
pmcid: 59095
doi: 10.1104/pp.123.4.1375
Baebler, Š. et al. Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against potato virus Y infection in potato. J. Exp. Bot. 65, 1095–1109 (2014).
pubmed: 24420577
pmcid: 3935562
doi: 10.1093/jxb/ert447
Chandra-Shekara, A. C. et al. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J. 40, 647–659 (2004).
pubmed: 15546349
doi: 10.1111/j.1365-313X.2004.02241.x
Sánchez, G. et al. Salicylic acid is involved in the Nb-mediated defense responses to potato virus X in Solanum tuberosum. Mol. Plant. Microbe Interact. 23, 394–405 (2010).
pubmed: 20192827
doi: 10.1094/MPMI-23-4-0394
Torres, M. A., Jones, J. D. G. & Dangl, J. L. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37, 1130–1134 (2005).
pubmed: 16170317
doi: 10.1038/ng1639
Torres, M. A., Dangl, J. L. & Jones, J. D. G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl Acad. Sci. USA 99, 517–522 (2002).
pubmed: 11756663
doi: 10.1073/pnas.012452499
Torres, M. A., Jones, J. D. G. & Dangl, J. L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373–378 (2006).
pubmed: 16760490
pmcid: 1475467
doi: 10.1104/pp.106.079467
Miller, G. et al. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2, ra45 (2009).
pubmed: 19690331
doi: 10.1126/scisignal.2000448
Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791 (1999).
pubmed: 10330465
pmcid: 144223
doi: 10.1105/tpc.11.5.781
Gross, P., Julius, C., Schmelzer, E. & Hahlbrock, K. Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defence gene activation in infected, cultured parsley cells. EMBO J. 12, 1735–1744 (1993).
pubmed: 8491167
pmcid: 413392
doi: 10.1002/j.1460-2075.1993.tb05821.x
Li, L. & Weigel, D. One hundred years of hybrid necrosis: hybrid autoimmunity as a window into the mechanisms and evolution of plant–pathogen interactions. Annu. Rev. Phytopathol. 59, 213–237 (2021).
pubmed: 33945695
doi: 10.1146/annurev-phyto-020620-114826
Barragan, A. C. et al. A truncated singleton NLR causes hybrid necrosis in Arabidopsis thaliana. Mol. Biol. Evol. 38, 557–574 (2021).
pubmed: 32966577
doi: 10.1093/molbev/msaa245
Cheng, Y. T. et al. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc. Natl Acad. Sci. USA 108, 14694–14699 (2011).
pubmed: 21873230
pmcid: 3167521
doi: 10.1073/pnas.1105685108
Zavaliev, R., Mohan, R., Chen, T. & Dong, X. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182, 1093–1108.e18 (2020).
pubmed: 32810437
pmcid: 7484032
doi: 10.1016/j.cell.2020.07.016