Simulation of a virtual liver iron overload model and R
GRE
MRI
R2*
UTE
fat-water model
liver iron overload
simulation
Journal
NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
13
07
2023
received:
18
11
2022
accepted:
14
07
2023
medline:
7
11
2023
pubmed:
4
8
2023
entrez:
4
8
2023
Statut:
ppublish
Résumé
R
Substances chimiques
Iron
E1UOL152H7
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e5018Subventions
Organisme : National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health
ID : R21EB031298
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Porter JL, Rawla P. Hemochromatosis. StatPearls; 2022.
Brittenham GM, Badman DG. Noninvasive measurement of iron: report of an NIDDK workshop. Blood. 2003;101(1):15-19. doi:10.1182/blood-2002-06-1723
Horng DE, Hernando D, Reeder SB. Quantification of liver fat in the presence of iron overload. J Magn Reson Imaging. 2017;45(2):428-439. doi:10.1002/jmri.25382
Henninger B. Demystifying liver iron concentration measurements with MRI. Eur Radiol. 2018;28(6):2535-2536. doi:10.1007/s00330-017-5199-8
Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am 2010;18(3):359-381, ix. doi:10.1016/j.mric.2010.08.014
Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106(4):1460-1465. doi:10.1182/blood-2004-10-3982
Hankins JS, McCarville MB, Loeffler RB, et al. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood. 2009;113(20):4853-4855. doi:10.1182/blood-2008-12-191643
Henninger B, Zoller H, Rauch S, et al. R2* relaxometry for the quantification of hepatic iron overload: biopsy-based calibration and comparison with the literature. Rofo. 2015;187(6):472-479. doi:10.1055/s-0034-1399318
Labranche R, Gilbert G, Cerny M, et al. Liver iron quantification with MR imaging: a primer for radiologists. Radiographics. 2018;38(2):392-412. doi:10.1148/rg.2018170079
Reeder SB, Robson PM, Yu H, et al. Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging. 2009;29(6):1332-1339. doi:10.1002/jmri.21751
Tipirneni-Sajja A, Krafft AJ, Loeffler RB, et al. Autoregressive moving average modeling for hepatic iron quantification in the presence of fat. J Magn Reson Imaging. 2019;50(5):1620-1632. doi:10.1002/jmri.26682
Hernando D, Liang ZP, Kellman P. Chemical shift-based water/fat separation: a comparison of signal models. Magn Reson Med. 2010;64(3):811-822. doi:10.1002/mrm.22455
Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM. Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging. 2012;35(5):1125-1132. doi:10.1002/jmri.23545
Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010;63(1):79-90. doi:10.1002/mrm.22177
Zhao R, Hamilton G, Brittain JH, Reeder SB, Hernando D. Design and evaluation of quantitative MRI phantoms to mimic the simultaneous presence of fat, iron, and fibrosis in the liver. Magn Reson Med. 2021;85(2):734-747. doi:10.1002/mrm.28452
Colgan TJ, Zhao R, Roberts NT, Hernando D, Reeder SB. Limits of fat quantification in the presence of iron overload. J Magn Reson Imaging. 2021;54(4):1166-1174. doi:10.1002/jmri.27611
Krafft AJ, Loeffler RB, Song R, et al. Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla. Magn Reson Med. 2017;78(5):1839-1851. doi:10.1002/mrm.26592
Doyle EK, Toy K, Valdez B, Chia JM, Coates T, Wood JC. Ultra-short echo time images quantify high liver iron. Magn Reson Med. 2018;79(3):1579-1585. doi:10.1002/mrm.26791
Tipirneni-Sajja A, Loeffler RB, Krafft AJ, et al. Ultrashort echo time imaging for quantification of hepatic iron overload: comparison of acquisition and fitting methods via simulations, phantoms, and in vivo data. J Magn Reson Imaging. 2019;49(5):1475-1488. doi:10.1002/jmri.26325
Kee Y, Sandino CM, Syed AB, et al. Free-breathing R2* mapping of hepatic iron overload in children using 3D multi-echo UTE cones MRI. Magn Reson Med. 2021;85(5):2608-2621. doi:10.1002/mrm.28610
Ghugre NR, Gonzalez-Gomez I, Shimada H, Coates TD, Wood JC. Quantitative analysis and modelling of hepatic iron stores using stereology and spatial statistics. J Microsc. 2010;238(3):265-274. doi:10.1111/j.1365-2818.2009.03355.x
Ghugre NR, Wood JC. Relaxivity-iron calibration in hepatic iron overload: probing underlying biophysical mechanisms using a Monte Carlo model. Magn Reson Med. 2011;65(3):837-847. doi:10.1002/mrm.22657
Ghugre NR, Doyle EK, Storey P, Wood JC. Relaxivity-iron calibration in hepatic iron overload: predictions of a Monte Carlo model. Magn Reson Med. 2015;74(3):879-883. doi:10.1002/mrm.25459
Wang C, Reeder SB, Hernando D. Relaxivity-iron calibration in hepatic iron overload: reproducibility and extension of a Monte Carlo model. NMR Biomed. 2021;34(12):e4604. doi:10.1002/nbm.4604
Storey P, Thompson AA, Carqueville CL, Wood JC, de Freitas RA, Rigsby CK. R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. J Magn Reson Imaging. 2007;25(3):540-547. doi:10.1002/jmri.20816
Hernando D, Kramer JH, Reeder SB. Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation. Magn Reson Med. 2013;70(5):1319-1331. doi:10.1002/mrm.24593
Hernando D, Zhao R, Yuan Q, et al. Multicenter reproducibility of liver iron quantification with 1.5-T and 3.0-T MRI. Radiology. 2023;306(2):e213256. doi:10.1148/radiol.213256
Shrestha U, van der Merwe M, Kumar N, et al. Morphological characterization of hepatic steatosis and Monte Carlo modeling of MRI signal for accurate quantification of fat fraction and relaxivity. NMR Biomed. 2021;34(6):e4489. doi:10.1002/nbm.4489