Peptidomics Methods Applied to the Study of Flower Development.

Ammonium sulphate Arabidopsis C-18 Database Mass spectrometry Peptidome Reverse-phase chromatography Ultrafiltration

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 7 8 2023
pubmed: 4 8 2023
entrez: 4 8 2023
Statut: ppublish

Résumé

Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.

Identifiants

pubmed: 37540375
doi: 10.1007/978-1-0716-3299-4_24
doi:

Substances chimiques

Peptides 0
Proteome 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

509-536

Informations de copyright

© 2023. Springer Science+Business Media, LLC, part of Springer Nature.

Références

Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammuea BPA (2015) The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell 27(8):2095–2118
pubmed: 26276833 pmcid: 4568509 doi: 10.1105/tpc.15.00440
Hsu PY, Benfey PN (2018) Small but mighty: functional peptides encoded by small ORFs in plants. Proteomics 18:1700038
doi: 10.1002/pmic.201700038
Brunet MA, Leblanc S, Roucou X (2020) Reconsidering proteomic diversity with functional investigation of small ORFs and alternative ORFs. Exp Cell Res 393(1):112057
pubmed: 32387289 doi: 10.1016/j.yexcr.2020.112057
Brunet MA, Levesque SA, Hunting DJ, Cohen AA, Roucou X (2018) Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Res 28(5):609–624
pubmed: 29626081 pmcid: 5932603 doi: 10.1101/gr.230938.117
Mudge JM, Ruiz-Orera J, Prensner JR, Brunet MA, Calvet F, Jungreis I et al (2022) Standardized annotation of translated open reading frames. Nat Biotechnol 40(7):994–999
pubmed: 35831657 pmcid: 9757701 doi: 10.1038/s41587-022-01369-0
Lyapina I, Ivanov V, Fesenko I (2021) Peptidome: chaos or inevitability. Int J Mol Sci 22:13128
pubmed: 34884929 pmcid: 8658490 doi: 10.3390/ijms222313128
Hellens RP, Brown CM, Chisnall MAW, Waterhouse PM, Macknight RC (2016) The emerging world of small ORFs. Trends Plant Sci 21(4):317–328
pubmed: 26684391 doi: 10.1016/j.tplants.2015.11.005
Takahashi F, Hanada K, Kondo T, Shinozaki K (2019) Hormone-like peptides and small coding genes in plant stress signaling and development. Curr Opin Plant Biol 51:88–95
pubmed: 31265991 doi: 10.1016/j.pbi.2019.05.011
Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15(3):193–204
pubmed: 24514441 doi: 10.1038/nrg3520
Couso JP, Patraquim P (2017) Classification and function of small open reading frames. Nat Rev Mol Cell Biol 18(9):575–589
pubmed: 28698598 doi: 10.1038/nrm.2017.58
Plaza S, Menschaert G, Payre F (2017) In search of lost small peptides. Annu Rev Cell Dev Biol 33:391–416
pubmed: 28759257 doi: 10.1146/annurev-cellbio-100616-060516
Wright BW, Yi Z, Weissman JS, Chen J (2022) The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 32(3):243–258
pubmed: 34844857 doi: 10.1016/j.tcb.2021.10.010
Orr MW, Mao Y, Storz G, Qian SB (2021) Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 48(3):1029–1042
doi: 10.1093/nar/gkz734
Ruiz-Orera J, Hernandez-Rodriguez J, Chiva C, Sabidó E, Kondova I, Bontrop R et al (2015) Origins of de novo genes in human and chimpanzee. PLoS Genet 11(12):e1005721
pubmed: 26720152 pmcid: 4697840 doi: 10.1371/journal.pgen.1005721
Ruiz-Orera J, Verdaguer-Grau P, Villanueva-Cañas JL, Messeguer X, Albà MM (2018) Translation of neutrally evolving peptides provides a basis for de novo gene evolution. Nat Ecol Evol 2(5):890–896
pubmed: 29556078 doi: 10.1038/s41559-018-0506-6
Ruiz-Orera J, Albà MM (2019) Translation of small open reading frames: roles in regulation and evolutionary innovation. Trends Genet 35(3):186–198
pubmed: 30606460 doi: 10.1016/j.tig.2018.12.003
Ruiz-Orera J, Villanueva-Cañas JL, Albà MM (2020) Evolution of new proteins from translated sORFs in long non-coding RNAs. Exp Cell Res 391(1):111940
pubmed: 32156600 doi: 10.1016/j.yexcr.2020.111940
Blevins WR, Ruiz-Orera J, Messeguer X, Blasco-Moreno B, Villanueva-Cañas JL, Espinar L et al (2021) Uncovering de novo gene birth in yeast using deep transcriptomics. Nat Commun 12(1):604
pubmed: 33504782 pmcid: 7841160 doi: 10.1038/s41467-021-20911-3
Fesenko I, Shabalina SA, Mamaeva A, Knyazev A, Glushkevich A, Lyapina I et al (2021) A vast pool of lineage-specific microproteins encoded by long non-coding RNAs in plants. Nucleic Acids Res 49(18):10328–10346
pubmed: 34570232 pmcid: 8501992 doi: 10.1093/nar/gkab816
Goto H, Okuda S, Mizukami A, Mori H, Sasaki N, Kurihara D et al (2011) Chemical visualization of an attractant peptide, LURE. Plant Cell Physiol 52(1):49–58
pubmed: 21149297 doi: 10.1093/pcp/pcq191
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA et al (2016) Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 5:e15075
pubmed: 27058169 pmcid: 4848090 doi: 10.7554/eLife.15075
Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA et al (2019) A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153:703–715
doi: 10.1104/pp.110.155457
Hsu PY, Calviello L, Wu HYL, Li FW, Rothfels CJ, Ohler U et al (2016) Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A 113(45):E7126–E7135
pubmed: 27791167 pmcid: 5111709 doi: 10.1073/pnas.1614788113
Juntawong P, Girke T, Bazin J, Bailey-Serres J (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111(1):E203–E212
pubmed: 24367078 doi: 10.1073/pnas.1317811111
Bazin J, Baerenfaller K, Gosai SJ, Gregory BD, Crespi M, Bailey-Serres J (2017) Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci U S A 114(46):E10018–E10027
pubmed: 29087317 pmcid: 5699049 doi: 10.1073/pnas.1708433114
Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ et al (2013) Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol 9(1):59–64
pubmed: 23160002 doi: 10.1038/nchembio.1120
Vanderperre B, Lucier JF, Bissonnette C, Motard J, Tremblay G, Vanderperre S et al (2013) Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS One 8(8):e70698
pubmed: 23950983 pmcid: 3741303 doi: 10.1371/journal.pone.0070698
Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MAS, Brocard M et al (2014) Extensive translation of small open reading frames revealed by poly-ribo-seq. eLife 3:e03528
pubmed: 25144939 pmcid: 4359375 doi: 10.7554/eLife.03528
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H et al (2017) A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell 68(1):171–184
pubmed: 28985503 doi: 10.1016/j.molcel.2017.09.015
Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F et al (2016) A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351:271–275
pubmed: 26816378 pmcid: 4892890 doi: 10.1126/science.aad4076
Makarewich CA, Baskin KK, Munir AZ, Bezprozvannaya S, Sharma G, Khemtong C et al (2018) MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep 23(13):3701–3709
pubmed: 29949755 pmcid: 6066340 doi: 10.1016/j.celrep.2018.05.058
Prensner JR, Enache OM, Luria V, Krug K, Clauser KR, Dempster JM et al (2021) Noncanonical open reading frames encode functional proteins essential for cancer cell survival. Nat Biotechnol 39(6):697–704
pubmed: 33510483 pmcid: 8195866 doi: 10.1038/s41587-020-00806-2
Boix O, Martinez M, Vidal S, Giménez-Alejandre M, Palenzuela L, Lorenzo-Sanz L et al (2022) pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation. Nat Commun 13(1):6840
pubmed: 36369429 pmcid: 9652315 doi: 10.1038/s41467-022-34529-6
Lin MF, Jungreis I, Kellis M (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27(13):i275–i282
pubmed: 21685081 pmcid: 3117341 doi: 10.1093/bioinformatics/btr209
Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17(5):632–640
pubmed: 17395691 pmcid: 1855179 doi: 10.1101/gr.5836207
Miravet-Verde S, Ferrar T, Espadas-García G, Mazzolini R, Gharrab A, Sabido E et al (2019) Unraveling the hidden universe of small proteins in bacterial genomes. Mol Syst Biol 15(2):e8290
pubmed: 30796087 pmcid: 6385055 doi: 10.15252/msb.20188290
Hanada K, Higuchi-Takeuchi M, Okamoto M, Yoshizumi T, Shimizu M, Nakaminami K et al (2013) Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc Natl Acad Sci U S A 110(6):2395–2400
pubmed: 23341627 pmcid: 3568369 doi: 10.1073/pnas.1213958110
Wang S, Tian L, Liu H, Li X, Zhang J, Chen X et al (2020) Large-scale discovery of non-conventional peptides in maize and Arabidopsis through an integrated peptidogenomic pipeline. Mol Plant 13(7):1078–1093
pubmed: 32445888 doi: 10.1016/j.molp.2020.05.012
Hazarika RR, De Coninck B, Yamamoto LR, Martin LR, Cammue BPA, Van Noort V (2017) ARA-PEPs: a repository of putative SORF-encoded peptides in Arabidopsis thaliana. BMC Bioinformatics 18(1):37
pubmed: 28095775 pmcid: 5240266 doi: 10.1186/s12859-016-1458-y
Couzigou J-M, Lauressergues D, Bécard G, Combier J-P, Ecard GB (2015) miRNA-encoded peptides (miPEPs): a new tool to analyze the roles of miRNAs in plant biology. RNA Biol 12:1178–1180
pubmed: 26400469 pmcid: 4829328 doi: 10.1080/15476286.2015.1094601
Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM (2014) Long non-coding RNAs as a source of new peptides. eLife 3:e03523
pubmed: 25233276 pmcid: 4359382 doi: 10.7554/eLife.03523
Hartford CCR, Lal A (2020) When long noncoding becomes protein coding. Mol Cell Biol 40(6):e00528–e00519
pubmed: 31907280 pmcid: 7048269 doi: 10.1128/MCB.00528-19
Kurihara Y, Makita Y, Shimohira H, Fujita T, Iwasaki S, Matsui M (2020) Translational landscape of protein-coding and non-protein-coding RNAs upon light exposure in Arabidopsis. Plant Cell Physiol 61(3):536–545
pubmed: 31794029 doi: 10.1093/pcp/pcz219
Liang Y, Zhu W, Chen S, Qian J, Li L (2021) Genome-wide identification and characterization of small peptides in maize. Front Plant Sci 12:695439
pubmed: 34220917 pmcid: 8244733 doi: 10.3389/fpls.2021.695439
Wu HYL, Song G, Walley JW, Hsu PY (2019) The tomato translational landscape revealed by transcriptome assembly and ribosome profiling. Plant Physiol 181(1):367–380
pubmed: 31248964 pmcid: 6716236 doi: 10.1104/pp.19.00541
Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A et al (2020) Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579:409–414
pubmed: 32188942 doi: 10.1038/s41586-020-2094-2
Wang P, Yao S, Kosami K-I, Guo T, Li J, Zhang Y et al (2020) Identification of endogenous small peptides involved in rice immunity through transcriptomics-and proteomics-based screening. Plant Biotechnol J 18:415–428
pubmed: 31301098 doi: 10.1111/pbi.13208
Jorge GL, Balbuena TS (2021) Identification of novel protein-coding sequences in Eucalyptus grandis plants by high-resolution mass spectrometry. Biochim Biophys Acta Proteins Proteom 1869:140594
pubmed: 33385527 doi: 10.1016/j.bbapap.2020.140594
Fesenko I, Kirov I, Kniazev A, Khazigaleeva R, Lazarev V, Kharlampieva D et al (2019) Distinct types of short open reading frames are translated in plant cells. Genome Res 29(9):1464–1477
pubmed: 31387879 pmcid: 6724668 doi: 10.1101/gr.253302.119
Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S, Aguet F et al (2021) Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat Biotechnol 40:209–217
pubmed: 34663921 pmcid: 10198624 doi: 10.1038/s41587-021-01021-3
Chen J, Brunner AD, Cogan JZ, Nuñez JK, Fields AP, Adamson B et al (2020) Pervasive functional translation of noncanonical human open reading frames. Science 367:140–146
doi: 10.1126/science.aay0262
Ma J, Ward CC, Jungreis I, Slavoff SA, Schwaid AG, Neveu J et al (2014) Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J Proteome Res 13(3):1757–1765
pubmed: 24490786 pmcid: 3993966 doi: 10.1021/pr401280w
Flower CT, Chen L, Jung HJ, Raghuram V, Knepper MA, Yang CR (2020) Genetic and genomics investigation of structure and function of the kidney: an integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla. Physiol Genomics 52(10):485
pubmed: 32866085 pmcid: 7750510 doi: 10.1152/physiolgenomics.00048.2020
Luo W, Xiao Y, Liang Q, Su Y, Xiao L (2019) Identification of potential auxin-responsive small signaling peptides through a peptidomics approach in arabidopsis thaliana. Molecules 24:3146
pubmed: 31470600 pmcid: 6749465 doi: 10.3390/molecules24173146
Barashkova AS, Rogozhin EA (2020) Isolation of antimicrobial peptides from different plant sources: does a general extraction method exist? Plant Methods 16:143
pubmed: 33110440 pmcid: 7585225 doi: 10.1186/s13007-020-00687-1
Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7(1):52–54
doi: 10.1002/elps.1150070108
Chatterjee M, Gupta S, Bhar A, Das S (2012) Optimization of an efficient protein extraction protocol compatible with two-dimensional electrophoresis and mass spectrometry from recalcitrant phenolic rich roots of chickpea (Cicer arietinum L.). Int J Proteomics 2012:536963
pubmed: 23193474 pmcid: 3502011 doi: 10.1155/2012/536963
Shi Y, Li J, Li L, Lin G, Bilal AM, Smagghe G et al (2021) Genomics, transcriptomics, and peptidomics of Spodoptera frugiperda (Lepidoptera, Noctuidae) neuropeptides. Arch Insect Biochem Physiol 106:e21740
pubmed: 33020953 doi: 10.1002/arch.21740
Culver KD, Allen JL, Shaw LN, Hicks LM (2021) Too hot to handle: antibacterial peptides identified in ghost pepper. J Nat Prod 84:2200–2208
pubmed: 34445876 pmcid: 8600445 doi: 10.1021/acs.jnatprod.1c00281
Kuljanin M, Dieters-Castator DZ, Hess DA, Postovit L-M, Lajoie GA (2017) Comparison of sample preparation techniques for large-scale proteomics. Proteomics 17(1–2):1600337
doi: 10.1002/pmic.201600337
Flower CT, Chen L, Jung HJ, Raghuram V, Knepper MA, Yang C-R (2020) An integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla. Physiol Genomics 52:485–491
pubmed: 32866085 pmcid: 7750510 doi: 10.1152/physiolgenomics.00048.2020
Cao S, Liu X, Huang Y, Yan Y, Zhou C, Shao C et al (2021) Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis. Commun Biol 4:1248
pubmed: 34728737 pmcid: 8563848 doi: 10.1038/s42003-021-02759-x
Grossmann J, Roschitzki B, Panse C, Fortes C, Barkow-Oesterreicher S, Rutishauser D et al (2010) Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods. J Proteome 73(9):1740–1746
doi: 10.1016/j.jprot.2010.05.011
Eng JK, Mccormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:977–989
doi: 10.1016/1044-0305(94)80016-2
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probablity-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3557
pubmed: 10612281 doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
Colinge J, Masselot A, Giron M, Dessingy T, Magnin J (2003) OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3(8):1454–1463
pubmed: 12923771 doi: 10.1002/pmic.200300485
Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467
pubmed: 14976030 doi: 10.1093/bioinformatics/bth092
Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964
pubmed: 15473683 doi: 10.1021/pr0499491
Fu Y, Yang Q, Sun R, Li D, Zeng R, Ling CX et al (2004) Exploiting the kernel trick to correlate fragment ions for peptide identification via tandem mass spectrometry. Bioinformatics 20(12):1948–1954
pubmed: 15044235 doi: 10.1093/bioinformatics/bth186
Tanner S, Shu H, Frank A, Wang LC, Zandi E, Mumby M et al (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77(14):4626–4639
pubmed: 16013882 doi: 10.1021/ac050102d
Bern M, Cai Y, Goldberg D (2007) Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. Anal Chem 79(4):1393–1400
pubmed: 17243770 doi: 10.1021/ac0617013
Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1):22–24
pubmed: 23148064 doi: 10.1002/pmic.201200439
Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5(1):5277
pubmed: 25358478 doi: 10.1038/ncomms6277
Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319
pubmed: 27809316 doi: 10.1038/nprot.2016.136
Zeng X, Ma B (2021) MSTracer: a machine learning software tool for peptide feature detection from liquid chromatography-mass spectrometry data. J Proteome Res 20(7):3455–3462
pubmed: 34137255 doi: 10.1021/acs.jproteome.0c01029
Hanada K, Akiyama K, Sakurai T, Toyoda T, Shinozaki K, Shiu S-H (2010) sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics 26(3):399–400
pubmed: 20008477 doi: 10.1093/bioinformatics/btp688
Yang X, Jensen SI, Wulff T, Harrison SJ, Long KS (2016) Identification and validation of novel small proteins in Pseudomonas putida. Environ Microbiol Rep 8(6):966–674
pubmed: 27717237 doi: 10.1111/1758-2229.12473
Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342
pubmed: 14558135 doi: 10.1002/rcm.1196
Han Y, Ma B, Zhang K (2005) Spider: software for protein identification from sequence tags with de novo sequencing error. J Bioinforma Comput Biol 3(3):697–716
doi: 10.1142/S0219720005001247
Jeong K, Kim S, Pevzner PA (2013) UniNovo: a universal tool for de novo peptide sequencing. Bioinformatics 29(16):1953–1962
pubmed: 23766417 pmcid: 3722526 doi: 10.1093/bioinformatics/btt338
Chi H, Chen H, He K, Wu L, Yang B, Sun R-X et al (2013) pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra. J Proteome Res 12:615–625
pubmed: 23272783 doi: 10.1021/pr3006843
Ma B (2015) Novor: real-time peptide de novo sequencing software. J Am Soc Mass Spectrom 26:1885–1894
pubmed: 26122521 pmcid: 4604512 doi: 10.1007/s13361-015-1204-0
Tran NH, Zhang X, Xin L, Shan B, Li M (2017) De novo peptide sequencing by deep learning. Proc Natl Acad Sci U S A 114(31):8247–8252
pubmed: 28720701 pmcid: 5547637 doi: 10.1073/pnas.1705691114
Tran NH, Qiao R, Xin L, Chen X, Liu C, Zhang X et al (2019) Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat Methods 16(1):63–66
pubmed: 30573815 doi: 10.1038/s41592-018-0260-3
Pathan M, Samuel M, Keerthikumar S, Mathivanan S (2017) Unassigned MS/MS spectra: who am I? In: Keerthikumar S, Mathivanan S (eds) Proteome bioinformatics. Methods in molecular biology, vol 1549. Humana Press, New York, pp 67–74
doi: 10.1007/978-1-4939-6740-7_6
Muth T, Renard BY (2018) Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification? Brief Bioinform 19(5):954–970
pubmed: 28369237 doi: 10.1093/bib/bbx033
Wu H, Johnson MC, Lu CH, Fritsche KL, Thomas AL, Lai Y et al (2015) Peptidomics study of anthocyanin-rich juice of elderberry. Talanta 131:640–644
pubmed: 25281152 doi: 10.1016/j.talanta.2014.08.022
Gemperline E, Keller C, Jayaraman D, Maeda J, Sussman MR, Ané J-MA et al (2016) Examination of endogenous peptides in Medicago truncatula using mass spectrometry imaging. J Proteome Res 15:4403–4411
pubmed: 27726374 pmcid: 6314849 doi: 10.1021/acs.jproteome.6b00471
Gemperline E, Keller C, Li L (2016) Mass spectrometry in plant-omics. Anal Chem 88(7):3422–3434
pubmed: 26889688 doi: 10.1021/acs.analchem.5b02938
Ye X, Zhao N, Yu X, Han X, Gao H, Zhang X (2016) Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometric approach. Proteomics 16:2788–2791
pubmed: 27604500 doi: 10.1002/pmic.201600183
Zhang K, Mckinlay C, Hocart CH, Djordjevic MA (2006) The Medicago truncatula small protein proteome and peptidome. J Proteome Res 12:3355–3367
doi: 10.1021/pr060336t
Wang X, Li Y, Wu Z, Wang H, Tan H, Peng J (2014) JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol Cell Proteomics 13(12):3663–3673
pubmed: 25202125 pmcid: 4256513 doi: 10.1074/mcp.O114.039586
Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223
pubmed: 24727770 doi: 10.1038/nbt.2841
Wilhelm M, Zolg DP, Graber M, Gessulat S, Schmidt T, Schnatbaum K et al (2021) Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nat Commun 12:3346
pubmed: 34099720 pmcid: 8184761 doi: 10.1038/s41467-021-23713-9
Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, Zerweck J et al (2019) Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat Methods 16:509–518
pubmed: 31133760 doi: 10.1038/s41592-019-0426-7
Ekvall M, Truong P, Gabriel W, Wilhelm M, Käll L (2022) Prosit transformer: a transformer for prediction of MS2 spectrum intensities. J Proteome Res 21(5):1359–1364
pubmed: 35413196 pmcid: 9087333 doi: 10.1021/acs.jproteome.1c00870
Gabriels R, Martens L, Degroeve S (2019) Updated MS
pubmed: 31028400 pmcid: 6602496 doi: 10.1093/nar/gkz299
Beer LA, Liu P, Ky B, Barnhart KT, Speicher DW (2017) Efficient quantitative comparisons of plasma proteomes using label-free analysis with MaxQuant. Methods Mol Biol 1619:339–352
pubmed: 28674895 pmcid: 5575765 doi: 10.1007/978-1-4939-7057-5_23
Gerster S, Kwon T, Ludwig C, Matondo M, Vogel C, Marcotte EM et al (2014) Statistical approach to protein quantification. Mol Cell Proteomics 13(2):666–677
pubmed: 24255132 doi: 10.1074/mcp.M112.025445
Fabre B, Lambour T, Bouyssié D, Menneteau T, Monsarrat B, Burlet-Schiltz O et al (2014) Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry. EuPA Open Proteom 4:82–86
doi: 10.1016/j.euprot.2014.06.001
Yeung YG, Stanley ER (2010) Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr Protoc Protein Sci 16(16):12
Michel AM, Fox G, Kiran A M, De Bo C, O’Connor PBF, Heaphy SM et al (2014) GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res 42:D859–D864
pubmed: 24185699 doi: 10.1093/nar/gkt1035
Wang H, Yang L, Wang Y, Chen L, Li H, Xie Z (2019) RPFdb v2.0: an updated database for genome-wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Res 47:D230–D234
pubmed: 30335166 doi: 10.1093/nar/gky978
Chen Y, Li D, Fan W, Zheng X, Zhou Y, Ye H et al (2020) PsORF: a database of small ORFs in plants. Plant Biotechnol J 18:2158–2160
pubmed: 32333496 pmcid: 7589237 doi: 10.1111/pbi.13389
Wethmar K, Barbosa-Silva A, Andrade-Navarro MA, Leutz A (2014) uORFdb--a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res 42:D60–D67
pubmed: 24163100 doi: 10.1093/nar/gkt952
Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M et al (2016) Detecting actively translated open reading frames in ribosome profiling data. Nat Methods 13(2):165–170
pubmed: 26657557 doi: 10.1038/nmeth.3688
Erhard F, Halenius A, Zimmermann C, L’Hernault A, Kowalewski DJ, Weekes MP et al (2018) Improved Ribo-seq enables identification of cryptic translation events. Nat Methods 15(5):363–366
pubmed: 29529017 pmcid: 6152898 doi: 10.1038/nmeth.4631
Xiao Z, Huang R, Xing X, Chen Y, Deng H, Yang X (2018) De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Res 46(10):e61
pubmed: 29538776 pmcid: 6007384 doi: 10.1093/nar/gky179
Perkins P, Mazzoni-Putman S, Stepanova A, Alonso J, Heber S (2019) RiboStreamR: a web application for quality control, analysis, and visualization of Ribo-seq data. BMC Genomics 20:422
pubmed: 31167636 pmcid: 6551240 doi: 10.1186/s12864-019-5700-7
Larry Wu H-Y, Yingshan Hsu P (2021) RiboPlotR: a visualization tool for periodic Ribo-seq reads. Plant Methods 17:124
doi: 10.1186/s13007-021-00824-4
Song B, Jiang M, Gao L (2021) RiboNT: a noise-tolerant predictor of open reading frames from ribosome-protected footprints. Life (Basel) 11(7):701
pubmed: 34357073
Zhou P, Silverstein KAT, Gao L, Walton JD, Nallu S, Guhlin J et al (2013) Detecting small plant peptides using SPADA (small peptide alignment discovery application). BMC Bioinformatics 14(1):335
pubmed: 24256031 pmcid: 3924332 doi: 10.1186/1471-2105-14-335
Zhu M, Gribskov M (2019) MiPepid: MicroPeptide identification tool using machine learning. BMC Bioinformatics 20(1):559
pubmed: 31703551 pmcid: 6842143 doi: 10.1186/s12859-019-3033-9
Tong X, Hong X, Xie J, Liu S (2020) CPPred-sORF: coding potential prediction of sORF based on non-AUG. bioRxiv. https://doi.org/10.1101/2020.03.31.017525
Zhao S, Meng J, Luan Y (2022) LncRNA-encoded short peptides identification using feature subset recombination and ensemble learning. Interdiscip Sci 14(1):101–112
pubmed: 34304369 doi: 10.1007/s12539-021-00464-1
Zhang Y, Jia C, Fullwood MJ, Kwoh CK (2021) DeepCPP: a deep neural network based on nucleotide bias information and minimum distribution similarity feature selection for RNA coding potential prediction. Brief Bioinform 22(2):2073–2084
pubmed: 32227075 doi: 10.1093/bib/bbaa039
Kersten RD, Yang Y, Xu Y, Cimermancic P, Nam S-J, Fenical W et al (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7(11):794–802
pubmed: 21983601 pmcid: 3258187 doi: 10.1038/nchembio.684
Cao X, Slavoff SA (2020) Non-AUG start codons: expanding and regulating the small and alternative ORFeome. Exp Cell Res 391(1):111973
pubmed: 32209305 pmcid: 7256928 doi: 10.1016/j.yexcr.2020.111973
Na CH, Barbhuiya MA, Kim MS, Verbruggen S, Eacker SM, Pletnikova O et al (2018) Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Res 28(1):25–36
pubmed: 29162641 pmcid: 5749180 doi: 10.1101/gr.226050.117
Li YR, Liu MJ (2020) Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 30(10):1418–1433
pubmed: 32973042 pmcid: 7605272 doi: 10.1101/gr.261834.120
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S et al (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50(D1):D543–D552
pubmed: 34723319 doi: 10.1093/nar/gkab1038
Patel N, Mohd-Radzman NA, Corcilius L, Crossett B, Connolly A, Cordwell SJ et al (2018) Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome. Mol Cell Proteomics 17(1):160–174
pubmed: 29079721 doi: 10.1074/mcp.RA117.000168
Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG et al (2014) Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell 26(10):4135–4148
pubmed: 25361956 pmcid: 4247587 doi: 10.1105/tpc.114.131185
Das D, Jaiswal M, Khan FN, Ahamad S, Kumar S (2020) PlantPepDB: a manually curated plant peptide database. Sci Rep 10(1):2194
pubmed: 32042035 pmcid: 7010657 doi: 10.1038/s41598-020-59165-2
Szcześniak MW, Bryzghalov O, Ciomborowska-Basheer J, Makałowska I (2019) CANTATAdb 2.0: expanding the collection of plant long noncoding RNAs. In: Chekanova JA, Wang HLV (eds) Plant long non-coding RNAs, Methods in molecular biology, vol 1933. Humana Press, New York, pp 415–429
doi: 10.1007/978-1-4939-9045-0_26
Singh A, Vivek AT, Kumar S (2021) AlnC: an extensive database of long non-coding RNAs in angiosperms. PLoS One 16(4):e0247215
pubmed: 33852582 pmcid: 8046212 doi: 10.1371/journal.pone.0247215
Niu R, Zhou Y, Zhang Y, Mou R, Tang Z, Wang Z et al (2020) uORFlight: a vehicle toward uORF-mediated translational regulation mechanisms in eukaryotes. Database 2020:baaa007
pubmed: 32168374 pmcid: 7068905 doi: 10.1093/database/baaa007
Niarchou A, Alexandridou A, Athanasiadis E, Spyrou G (2013) C-PAmP: large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species. PLoS One 8(11):e79728
pubmed: 24244550 pmcid: 3823563 doi: 10.1371/journal.pone.0079728
Wang J, Yin T, Xiao X, He D, Xue Z, Jiang X et al (2018) StraPep: a structure database of bioactive peptides. Database 2018:bay038
pubmed: 29688386 pmcid: 5905355 doi: 10.1093/database/bay038
Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y et al (2022) DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res 50(D1):D488–D496
pubmed: 34390348 doi: 10.1093/nar/gkab651
Boschiero C, Dai X, Lundquist PK, Roy S, de Bang TC, Zhang S et al (2020) MtSSPdb: the Medicago truncatula small secreted peptide database. Plant Physiol 183(1):399–413
pubmed: 32079733 pmcid: 7210635 doi: 10.1104/pp.19.01088
Lin X, Lin W, Ku YS, Wong FL, Li MW, Lam HM et al (2020) Analysis of soybean long non-coding RNAs reveals a subset of small peptide-coding transcripts. Plant Physiol 182(3):1359–1374
pubmed: 31882456 doi: 10.1104/pp.19.01324

Auteurs

Raquel Álvarez-Urdiola (R)

Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.

Eva Borràs (E)

Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
Universitat Pompeu Fabra, Barcelona, Spain.

Federico Valverde (F)

Institute for Plant Biochemistry and Photosynthesis CSIC - University of Seville, Seville, Spain.

José Tomás Matus (JT)

Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain.

Eduard Sabidó (E)

Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
Universitat Pompeu Fabra, Barcelona, Spain.

José Luis Riechmann (JL)

Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain. joseluis.riechmann@cragenomica.es.
Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. joseluis.riechmann@cragenomica.es.

Articles similaires

Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant
Animals Huntington Disease Mitochondria Neurons Mice
Humans Arthritis, Rheumatoid Lipid Metabolism Male Female

Classifications MeSH