Nucleoside-Driven Specificity of DNA Methyltransferase.


Journal

Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360

Informations de publication

Date de publication:
16 Nov 2023
Historique:
revised: 03 08 2023
received: 05 02 2023
medline: 20 11 2023
pubmed: 7 8 2023
entrez: 7 8 2023
Statut: ppublish

Résumé

We have studied the adenosine binding specificities of two bacterial DNA methyltransferases, Taq methyltransferase (M.TaqI), and HhaI methyltransferase (M.HhaI). While they have similar cofactor binding pocket interactions, experimental data showed different specificity for novel S-nucleobase-l-methionine cofactors (SNMs; N=guanosyl, cytidyl, uridyl). Protein dynamics corroborate the experimental data on the cofactor specificities. For M.TaqI the specificity for S-adenosyl-l-methionine (SAM) is governed by the tight binding on the nucleoside part of the cofactor, while for M.HhaI the degree of freedom of the nucleoside chain allows the acceptance of other bases. The experimental data prove catalytically productive methylation by the M.HhaI binding pocket for all the SNMs. Our results suggest a new route for successful design of unnatural SNM analogues for methyltransferases as a tool for cofactor engineering.

Identifiants

pubmed: 37548117
doi: 10.1002/cbic.202300094
doi:

Substances chimiques

Nucleosides 0
Methyltransferases EC 2.1.1.-
Adenosine K72T3FS567
Methionine AE28F7PNPL
DNA 9007-49-2
S-Adenosylmethionine 7LP2MPO46S

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202300094

Subventions

Organisme : Okinawa Institute of Science and Technology
Organisme : Kakenhi Grant
ID : 90812256
Organisme : Kakenhi Grant
ID : 22K15064

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

K. A. Denessiouk, V. V. Rantanen, M. S. Johnson, Proteins 2001, 44, 282-291.
S. L. Moodie, J. B. Mitchell, J. M. Thornton, J. Mol. Biol. 1996, 263, 486-500.
A. Narunsky, A. Kessel, R. Solan, V. Alva, R. Kolodny, N. Ben-Tal, Proc. Natl. Acad. Sci. USA 2020, 117, 4701-4709.
P. Rogne, M. Rosselin, C. Grundström, C. Hedberg, U. H. Sauer, M. Wolf-Watz, Proc. Natl. Acad. Sci. USA 2018, 115, 3012-3017.
I. Nobeli, R. A. Laskowski, W. S. Valdar, J. M. Thornton, Nucleic Acids Res. 2001, 29, 4294-4309.
S. Merali, A. B. Clarkson Jr, FEMS Microbiol. Lett. 2004, 237, 179-186.
A. E. Pegg, J. Biol. Chem. 2016, 291, 14904-14912.
S. C. Lu, Mol. Aspects Med. 2009, 30, 42-59.
S. C. Lu, J. M. Mato, Physiol. Rev. 2012, 92, 1515-1542.
P. K. Chiang, R. K. Gordon, J. Tal, G. C. Zeng, B. P. Doctor, K. Pardhasaradhi, P. P. McCann, FASEB J. 1996, 10, 471-480.
M. G. Goll, T. H. Bestor, Annu. Rev. Biochem. 2005, 74, 481-514.
M. Fontecave, M. Atta, E. Mulliez, Trends Biochem. Sci. 2004, 29, 243-249.
G. L. Cantoni, Annu. Rev. Biochem. 1975, 44, 435-451.
B. S. Zhao, I. A. Roundtree, C. He, Nat. Rev. Mol. Cell Biol. 2017, 18, 31-42.
G. Zheng, Y. Fu, C. He, Chem. Rev. 2014, 114, 4602-4620.
L. D. Moore, T. Le, G. Fan, Neuropsychopharmacology 2013, 38, 23-38.
R. Holliday, J. E. Pugh, Science 1975, 187, 226-232.
S-Adenosylmethionine-Dependent Methyltransferases, (Eds: X. Cheng, R.M. Blumenthal),World Scientific, 1999, pp. i-xvii.
M. V. C. Greenberg, D. Bourc′his, Nat. Rev. Mol. Cell Biol. 2019, 20, 590-607.
F. Fuks, W. A. Burgers, A. Brehm, L. Hughes-Davies, T. Kouzarides, Nat. Genet. 2000, 24, 88-91.
S. Ghosh, A. J. Yates, M. C. Fruhwald, J. C. Miecznikowski, C. Plass, D. Smiraglia, Epigenetics 2010, 5, 527-538.
S. Gopalakrishnan, B. O. Van Emburgh, K. D. Robertson, Mutat. Res. 2008, 647, 30-38.
B. Jin, Y. Li, K. D. Robertson, Genes Cancer 2011, 2, 607-617.
K. D. Robertson, Nat. Rev. Genet. 2005, 6, 597-610.
N. V. Cornelissen, F. Michailidou, F. Muttach, K. Rau, A. Rentmeister, Chem. Commun. (Camb.) 2020, 56, 2115-2118.
L. Anhauser, F. Muttach, A. Rentmeister, Chem. Commun. 2018, 54, 449-451.
C. Dalhoff, G. Lukinavičius, S. Klimas̆auskas, E. Weinhold, Nat. Chem. Biol. 2006, 2, 31-32.
G. Lukinavičius, V. Lapienė, Z. Staševskij, C. Dalhoff, E. Weinhold, S. Klimašauskas, J. Am. Chem. Soc. 2007, 129, 2758-2759.
G. Lukinavicius, M. Tomkuviene, V. Masevicius, S. Klimasauskas, ACS Chem. Biol. 2013, 8, 1134-1139.
S. Kim, A. Gottfried, R. R. Lin, T. Dertinger, A. S. Kim, S. Chung, R. A. Colyer, E. Weinhold, S. Weiss, Y. Ebenstein, Angew. Chem. Int. Ed. 2012, 51, 3578-3581.
F. Muttach, N. Muthmann, D. Reichert, L. Anhäuser, A. Rentmeister, Chem. Sci. 2017, 8, 7947-7953.
P. Laurino, A. Toth-Petroczy, R. Meana-Paneda, W. Lin, D. G. Truhlar, D. S. Tawfik, PLoS Biol. 2016, 14, e1002396.
G. Basu, D. Sivanesan, T. Kawabata, N. Go, J. Mol. Biol. 2004, 342, 1053-1066.
M. Gade, L. L. Tan, A. M. Damry, M. Sandhu, J. S. Brock, A. Delaney, A. Villar-Briones, C. J. Jackson, P. Laurino, JACS Au 2021, 1, 2349-2360.
K. Goedecke, M. Pignot, R. S. Goody, A. J. Scheidig, E. Weinhold, Nat. Struct. Biol. 2001, 8, 121-125.
U. T. Sankpal, D. N. Rao, Crit. Rev. Biochem. Mol. Biol. 2002, 37, 167-197.
G. Schluckebier, M. Kozak, N. Bleimling, E. Weinhold, W. Saenger, J. Mol. Biol. 1997, 265, 56-67.
U. T. Sankpal, D. N. Rao, Nucleic Acids Res. 2002, 30, 2628-2638.
T. Naito, K. Kusano, I. Kobayashi, Science 1995, 267, 897-899.
I. Kobayashi, Nucleic Acids Res. 2001, 29, 3742-3756.
E. G. Malygin, V. V. Zinoviev, A. A. Evdokimov, W. M. Lindstrom Jr, N. O. Reich, S. Hattman, J. Biol. Chem. 2003, 278, 15713-15719.
Z. E. Newby, E. Y. Lau, T. C. Bruice, Proc. Natl. Acad. Sci. USA 2002, 99, 7922-7927.
H. Pues, N. Bleimling, B. Holz, J. Wolcke, E. Weinhold, Biochem. 1999, 38, 1426-1434.
D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. Berendsen, J. Comput. Chem. 2005, 26, 1701-1718.
B. Holz, S. Klimasauskas, S. Serva, E. Weinhold, Nucleic Acids Res. 1998, 26, 1076-1083.
V. B. D. A. Case, J. T. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti, T. E. Cheatham III, T. A. Darden, R. E. Duke, H. Gohlke, A. W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T. S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. M. Merz, F. Paesani, D. R. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, P. A. Kollman, AMBER 14, 2014, University of California, San Francisco.
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926-935.
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684-3690.
M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182-7190.

Auteurs

Madhuri Gade (M)

Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan.

Jasmine M Gardner (JM)

Department of Chemistry - BMC, Uppsala University, Box 576, 751 23, Uppsala, Sweden.

Prashant Jain (P)

Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan.

Paola Laurino (P)

Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan.

Articles similaires

Humans DNA Methylation Female Male Alcohol Oxidoreductases
Animals Epigenesis, Genetic DNA Methylation Skates, Fish CpG Islands

Classifications MeSH