Nucleoside-Driven Specificity of DNA Methyltransferase.
DNA methylation
enzyme dynamics
methyltransferases
nucleobases
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
16 Nov 2023
16 Nov 2023
Historique:
revised:
03
08
2023
received:
05
02
2023
medline:
20
11
2023
pubmed:
7
8
2023
entrez:
7
8
2023
Statut:
ppublish
Résumé
We have studied the adenosine binding specificities of two bacterial DNA methyltransferases, Taq methyltransferase (M.TaqI), and HhaI methyltransferase (M.HhaI). While they have similar cofactor binding pocket interactions, experimental data showed different specificity for novel S-nucleobase-l-methionine cofactors (SNMs; N=guanosyl, cytidyl, uridyl). Protein dynamics corroborate the experimental data on the cofactor specificities. For M.TaqI the specificity for S-adenosyl-l-methionine (SAM) is governed by the tight binding on the nucleoside part of the cofactor, while for M.HhaI the degree of freedom of the nucleoside chain allows the acceptance of other bases. The experimental data prove catalytically productive methylation by the M.HhaI binding pocket for all the SNMs. Our results suggest a new route for successful design of unnatural SNM analogues for methyltransferases as a tool for cofactor engineering.
Identifiants
pubmed: 37548117
doi: 10.1002/cbic.202300094
doi:
Substances chimiques
Nucleosides
0
Methyltransferases
EC 2.1.1.-
Adenosine
K72T3FS567
Methionine
AE28F7PNPL
DNA
9007-49-2
S-Adenosylmethionine
7LP2MPO46S
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202300094Subventions
Organisme : Okinawa Institute of Science and Technology
Organisme : Kakenhi Grant
ID : 90812256
Organisme : Kakenhi Grant
ID : 22K15064
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
K. A. Denessiouk, V. V. Rantanen, M. S. Johnson, Proteins 2001, 44, 282-291.
S. L. Moodie, J. B. Mitchell, J. M. Thornton, J. Mol. Biol. 1996, 263, 486-500.
A. Narunsky, A. Kessel, R. Solan, V. Alva, R. Kolodny, N. Ben-Tal, Proc. Natl. Acad. Sci. USA 2020, 117, 4701-4709.
P. Rogne, M. Rosselin, C. Grundström, C. Hedberg, U. H. Sauer, M. Wolf-Watz, Proc. Natl. Acad. Sci. USA 2018, 115, 3012-3017.
I. Nobeli, R. A. Laskowski, W. S. Valdar, J. M. Thornton, Nucleic Acids Res. 2001, 29, 4294-4309.
S. Merali, A. B. Clarkson Jr, FEMS Microbiol. Lett. 2004, 237, 179-186.
A. E. Pegg, J. Biol. Chem. 2016, 291, 14904-14912.
S. C. Lu, Mol. Aspects Med. 2009, 30, 42-59.
S. C. Lu, J. M. Mato, Physiol. Rev. 2012, 92, 1515-1542.
P. K. Chiang, R. K. Gordon, J. Tal, G. C. Zeng, B. P. Doctor, K. Pardhasaradhi, P. P. McCann, FASEB J. 1996, 10, 471-480.
M. G. Goll, T. H. Bestor, Annu. Rev. Biochem. 2005, 74, 481-514.
M. Fontecave, M. Atta, E. Mulliez, Trends Biochem. Sci. 2004, 29, 243-249.
G. L. Cantoni, Annu. Rev. Biochem. 1975, 44, 435-451.
B. S. Zhao, I. A. Roundtree, C. He, Nat. Rev. Mol. Cell Biol. 2017, 18, 31-42.
G. Zheng, Y. Fu, C. He, Chem. Rev. 2014, 114, 4602-4620.
L. D. Moore, T. Le, G. Fan, Neuropsychopharmacology 2013, 38, 23-38.
R. Holliday, J. E. Pugh, Science 1975, 187, 226-232.
S-Adenosylmethionine-Dependent Methyltransferases, (Eds: X. Cheng, R.M. Blumenthal),World Scientific, 1999, pp. i-xvii.
M. V. C. Greenberg, D. Bourc′his, Nat. Rev. Mol. Cell Biol. 2019, 20, 590-607.
F. Fuks, W. A. Burgers, A. Brehm, L. Hughes-Davies, T. Kouzarides, Nat. Genet. 2000, 24, 88-91.
S. Ghosh, A. J. Yates, M. C. Fruhwald, J. C. Miecznikowski, C. Plass, D. Smiraglia, Epigenetics 2010, 5, 527-538.
S. Gopalakrishnan, B. O. Van Emburgh, K. D. Robertson, Mutat. Res. 2008, 647, 30-38.
B. Jin, Y. Li, K. D. Robertson, Genes Cancer 2011, 2, 607-617.
K. D. Robertson, Nat. Rev. Genet. 2005, 6, 597-610.
N. V. Cornelissen, F. Michailidou, F. Muttach, K. Rau, A. Rentmeister, Chem. Commun. (Camb.) 2020, 56, 2115-2118.
L. Anhauser, F. Muttach, A. Rentmeister, Chem. Commun. 2018, 54, 449-451.
C. Dalhoff, G. Lukinavičius, S. Klimas̆auskas, E. Weinhold, Nat. Chem. Biol. 2006, 2, 31-32.
G. Lukinavičius, V. Lapienė, Z. Staševskij, C. Dalhoff, E. Weinhold, S. Klimašauskas, J. Am. Chem. Soc. 2007, 129, 2758-2759.
G. Lukinavicius, M. Tomkuviene, V. Masevicius, S. Klimasauskas, ACS Chem. Biol. 2013, 8, 1134-1139.
S. Kim, A. Gottfried, R. R. Lin, T. Dertinger, A. S. Kim, S. Chung, R. A. Colyer, E. Weinhold, S. Weiss, Y. Ebenstein, Angew. Chem. Int. Ed. 2012, 51, 3578-3581.
F. Muttach, N. Muthmann, D. Reichert, L. Anhäuser, A. Rentmeister, Chem. Sci. 2017, 8, 7947-7953.
P. Laurino, A. Toth-Petroczy, R. Meana-Paneda, W. Lin, D. G. Truhlar, D. S. Tawfik, PLoS Biol. 2016, 14, e1002396.
G. Basu, D. Sivanesan, T. Kawabata, N. Go, J. Mol. Biol. 2004, 342, 1053-1066.
M. Gade, L. L. Tan, A. M. Damry, M. Sandhu, J. S. Brock, A. Delaney, A. Villar-Briones, C. J. Jackson, P. Laurino, JACS Au 2021, 1, 2349-2360.
K. Goedecke, M. Pignot, R. S. Goody, A. J. Scheidig, E. Weinhold, Nat. Struct. Biol. 2001, 8, 121-125.
U. T. Sankpal, D. N. Rao, Crit. Rev. Biochem. Mol. Biol. 2002, 37, 167-197.
G. Schluckebier, M. Kozak, N. Bleimling, E. Weinhold, W. Saenger, J. Mol. Biol. 1997, 265, 56-67.
U. T. Sankpal, D. N. Rao, Nucleic Acids Res. 2002, 30, 2628-2638.
T. Naito, K. Kusano, I. Kobayashi, Science 1995, 267, 897-899.
I. Kobayashi, Nucleic Acids Res. 2001, 29, 3742-3756.
E. G. Malygin, V. V. Zinoviev, A. A. Evdokimov, W. M. Lindstrom Jr, N. O. Reich, S. Hattman, J. Biol. Chem. 2003, 278, 15713-15719.
Z. E. Newby, E. Y. Lau, T. C. Bruice, Proc. Natl. Acad. Sci. USA 2002, 99, 7922-7927.
H. Pues, N. Bleimling, B. Holz, J. Wolcke, E. Weinhold, Biochem. 1999, 38, 1426-1434.
D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. Berendsen, J. Comput. Chem. 2005, 26, 1701-1718.
B. Holz, S. Klimasauskas, S. Serva, E. Weinhold, Nucleic Acids Res. 1998, 26, 1076-1083.
V. B. D. A. Case, J. T. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti, T. E. Cheatham III, T. A. Darden, R. E. Duke, H. Gohlke, A. W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T. S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. M. Merz, F. Paesani, D. R. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, P. A. Kollman, AMBER 14, 2014, University of California, San Francisco.
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926-935.
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684-3690.
M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182-7190.