Noninvasive, epigenetic age estimation in an elasmobranch, the cownose ray (Rhinoptera bonasus).
Ageing
DNA methylation
Epigenetic clock
Multi-tissue
Rays
Sharks
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
05
08
2024
accepted:
28
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Age data are essential for estimating life history parameters and are thus critical for population assessment, management, and conservation. Traditional vertebrae-based age estimation in elasmobranchs can be costly, time intensive, of low accuracy, and is by necessity lethal. Herein, epigenetic clocks were developed for an elasmobranch, the cownose ray (Rhinoptera bonasus), using aquarium-born individuals (n = 42) with known dates of birth (age range: 7-7,878 days or 0-21 years) and two tissue types (fin clips and whole blood) that can be sampled in a relatively non-invasive manner. Enzymatically-converted restriction site-associated DNA sequencing (ECrad-seq) was used to identify CpG sites that exhibited age-correlated DNA methylation. The epigenetic clocks developed were highly accurate (mean absolute error, MAE, < 0.75 years) and precise (R
Identifiants
pubmed: 39482525
doi: 10.1038/s41598-024-78004-2
pii: 10.1038/s41598-024-78004-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26261Informations de copyright
© 2024. The Author(s).
Références
Winemiller, K. O. Life history strategies, population regulation, and implications for fisheries management. Can. J. Fish. Aquat. Sci. 62, 872–885 (2005).
doi: 10.1139/f05-040
Musick, J. A. Ecology and conservation of long-live marine animals. Am. Fish. Soc. Sym. 23, 1–10 (1999).
Cailliet, G. M. Perspectives on elasmobranch life-history studies: a focus on age validation and relevance to fishery management. J. Fish. Biol. 87, 1271–1292 (2015).
doi: 10.1111/jfb.12829
pubmed: 26709208
Helser, T. E., Benson, I. M. & Barnett, B. K. Proceedings of the research workshop on the rapid estimation of fish age using Fourier transform near infrared spectroscopy (FT-NIRS). AFSC Processed Rep. 2019-06. Alaska Fisheries Science Center, NOAA, National Marine Fisheries Service (2019).
Matta, M. E., Tribuzio, C. A., Ebert, D. A., Goldman, K. J. & Gburski, C. M. Age and growth of elasmobranchs and applications to fisheries management and conservation in the Northeast Pacific Ocean. Adv. Mar. Biol. 77, 179–220 (2017).
doi: 10.1016/bs.amb.2017.06.002
pubmed: 28882214
Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 4773–4787 (2021).
doi: 10.1016/j.cub.2021.08.062
pubmed: 34492229
Piferrer, F. & Anastasiadi, D. Age estimation in fishes using epigenetic clocks: applications to fisheries management and conservation biology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1062151 (2023).
Mayne, B. et al. Accurate, non-destructive, and high-throughput age estimation for golden perch (Macquaria ambigua spp.) using DNA methylation. Sci. Rep. 13, 9547 (2023).
doi: 10.1038/s41598-023-36773-2
pubmed: 37308782
pmcid: 10260977
Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacol. 38, 23–38 (2013).
doi: 10.1038/npp.2012.112
Anastasiadi, D. & Piferrer, F. A. Bioinformatic analysis for age prediction using epigenetic clocks: application to fisheries management and conservation biology. Front. Mar. Sci. 10, 1096909 (2023).
doi: 10.3389/fmars.2023.1096909
Anastasiadi, D. & Piferrer, F. A. Clockwork fish: age prediction using DNA methylation-based biomarkers in the European seabass. Mol. Ecol. Resour. 20, 387–397 (2020).
doi: 10.1111/1755-0998.13111
pubmed: 31674713
Mayne, B. et al. A DNA methylation age predictor for zebrafish. Aging. 12, 24817–24835 (2020).
doi: 10.18632/aging.202400
pubmed: 33353889
pmcid: 7803548
Weber, D. N. et al. Novel epigenetic age estimation in wild-caught Gulf of Mexico reef fishes. Can. J. Fish. Aquat. Sci. 79, 1–5 (2022).
doi: 10.1139/cjfas-2021-0240
Weber, D. N., Fields, A. T., Chamberlin, D. W., Patterson, W. F. III & Portnoy, D. S. Epigenetic age estimation in a long-lived, deepwater scorpionfish: insights into epigenetic clock development. Can. J. Fish. Aquat. Sci. 81, 620–631 (2024).
doi: 10.1139/cjfas-2023-0296
Beal, A. P., Hackerott, S., Feldheim, K., Gruber, S. H. & Eirin-Lopez, J. M. Age group DNA methylation differences in lemon sharks (Negaprion brevirostris): implications for future age estimation tools. Ecol. Evol. 12, e9226 (2022).
doi: 10.1002/ece3.9226
pubmed: 36052296
pmcid: 9425014
Last, P.R., White, W.T., de Carvalho, M.R., Seret, B., Stehmann, M.F.W., & Naylor, G.J.P. Rays of the World. CSIRO Publishing, Clayton South, Victoria, Australia (2016).
Fisher, R. A., Call, G. C. & Grubbs, R. D. Age, growth, and reproductive biology of cownose rays in Chesapeake Bay. Mar. Coast Fish. 5, 224–235 (2013).
doi: 10.1080/19425120.2013.812587
Ferreira, C. M., Field, C. L. & Tuttle, A. D. Hematological and plasma biochemical parameters of aquarium-maintained cownose rays. J. Aquat. Anim. Health. 22, 123–128 (2010).
doi: 10.1577/H09-048.1
pubmed: 20848887
Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. 69, 82–90 (1991).
doi: 10.1139/z91-013
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 7, e37135 (2012).
doi: 10.1371/journal.pone.0037135
pubmed: 22675423
pmcid: 3365034
Puritz, J. B., Hollenbeck, C. M. & Gold, J. R. dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ. https://doi.org/10.7717/peerj.431 (2014).
doi: 10.7717/peerj.431
pubmed: 24949246
pmcid: 4060032
Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 26, 404–413 (1934).
doi: 10.1093/biomet/26.4.404
Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.19.3 (2020).
Lunn, D., Barrett, J., Sweeting, M. & Thompson, S. Fully bayesian hierarchical modeling in two stages, with application to meta-analysis. J. R Stat. Soc. Ser. C Appl. Stat. 62, 551–572 (2013).
doi: 10.1111/rssc.12007
pubmed: 24223435
pmcid: 3814003
Muth, C., Oravecz, Z. & Gabry, J. User-friendly bayesian regression modelling: a tutorial with rstanarm and shinystan. Quant. Meth Psychol. 14, 99–119 (2018).
doi: 10.20982/tqmp.14.2.p099
van Buuren, S. & Groothuis-Oudshoorn, K. Mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).
doi: 10.18637/jss.v045.i03
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
doi: 10.18637/jss.v033.i01
pubmed: 20808728
pmcid: 2929880
Yeo, I. K. & Johnson, R. A. A new family of power transformations to improve normality or symmetry. Biometrika. 87, 954–959 (2000).
doi: 10.1093/biomet/87.4.954
Bertucci, E. M., Mason, M. W., Rhodes, O. E. & Parrot, B. J. Exposure to ionizing radiation disrupts normal epigenetic aging in Japanese medaka. Aging. 13, 22752–22771 (2021).
doi: 10.18632/aging.203624
pubmed: 34644261
pmcid: 8544305
Mayne, B. et al. Nonlethal age estimation of three threatened fish species using DNA methylation: Australian lungfish, Murray Cod and Mary River Cod. Mol. Ecol. Res. 21, 2324–2332 (2021).
doi: 10.1111/1755-0998.13440
Campbell, N. R., Harmon, S. A. & Narum, S. R. Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol. Ecol. Res. 15, 855–867 (2015).
doi: 10.1111/1755-0998.12357
Meek, M. H. & Larson, W. A. The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era. Mol. Ecol. Res. 19, 795–803 (2019).
doi: 10.1111/1755-0998.12998
Yusipov, I. et al. Age-related DNA methylation changes are sex-specific: a comprehensive assessment. Aging. 12, 24057–24080 (2020).
doi: 10.18632/aging.202251
pubmed: 33276343
pmcid: 7762479
Lemaitre, J. et al. DNA methylation as a tool to explore ageing in wild roe deer populations. Mol. Ecol. Res. 22, 1002–1015 (2022).
doi: 10.1111/1755-0998.13533
Mayne, B. et al. Increased scalability and sequencing quality of an epigenetic age prediction assay. PLoS ONE. 19, e0297006 (2024).
doi: 10.1371/journal.pone.0297006
pubmed: 38743704
pmcid: 11093300
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).
doi: 10.1186/gb-2013-14-10-r115
pubmed: 24138928
pmcid: 4015143
Han, Y. et al. Epigenetic age-predictor for mice based on three CpG sites. eLife. 7, 1–10 (2018).
doi: 10.7554/eLife.37462
Ito, H., Udono, T., Hirata, S. & Inoue-Murayama, M. Estimation of chimpanzee age based on DNA methylation. Sci. Rep. 8, 9998l (2018).
doi: 10.1038/s41598-018-28318-9
Paoli-Iseppi, R. et al. Age estimation in a long-lived seabird (Ardenna Tenuirostris) using DNA methylation-based biomarkers. Mol. Ecol. Res. 19, 411–425 (2019).
doi: 10.1111/1755-0998.12981
Mayne, B., Espinoza, T. & Roberts, D. Tell us a story granddad: age and origin of an iconic Australian lungfish. Front. Environ. Sci. 10, 931467 (2022).
doi: 10.3389/fenvs.2022.931467
Tidiere, M. et al. Comparative analyses of longevity and senescence reveal variable survival benefits of living in zoos across mammals. Sci. Rep. 6, 36361 (2016).
doi: 10.1038/srep36361
pubmed: 27819303
pmcid: 5098244
Harry, A. V. Evidence for systemic age underestimation in shark and ray ageing studies. Fish. Fish. 19, 185–200 (2018).
doi: 10.1111/faf.12243