Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes.


Journal

FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484

Informations de publication

Date de publication:
09 2023
Historique:
revised: 12 07 2023
received: 08 06 2023
accepted: 26 07 2023
medline: 9 8 2023
pubmed: 8 8 2023
entrez: 8 8 2023
Statut: ppublish

Résumé

The liver is an essential multifunctional organ, which constantly communicates with nearly all tissues. It has raised the concern that microgravity exposure can lead to liver dysfunction and metabolic syndromes. However, molecular mechanisms and intervention measures of the adverse effects of microgravity on hepatocytes are limited. In this study, we utilized the random positioning machine culture system to investigate the adverse effects on hepatocytes under simulated microgravity (SMG). Our results showed that SMG impaired hepatocyte viability, causing cell cycle arrest and apoptosis. Compared to normal gravity, it also triggered lipid accumulation, elevated triglyceride (TG) and ROS levels, and impaired mitochondria function in hepatocytes. Furthermore, RNA sequencing results showed that SMG upregulated genes implicated in lipid metabolisms, including PPARγ, PLIN2, CD36, FABPs, etc. Importantly, all these defects can be suppressed by melatonin, a potent antioxidant secreted by the pineal gland, suggesting its potential use of therapeutic intervention.

Identifiants

pubmed: 37552471
doi: 10.1096/fj.202301137R
doi:

Substances chimiques

Melatonin JL5DK93RCL
Lipids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e23132

Informations de copyright

© 2023 Federation of American Societies for Experimental Biology.

Références

Bergouignan A, Stein TP, Habold C, Coxam V, O'gorman D, Blanc S. Towards human exploration of space: the THESEUS review series on nutrition and metabolism research priorities. Npj Microgravity. 2016;2:16029. doi:10.1038/npjmgrav.2016.29
Afshinnekoo E, Scott RT, MacKay MJ, et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell. 2020;183(5):1162-1184. doi:10.1016/j.cell.2020.10.050
Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science (80-). 2019;364(6436):139-148. doi:10.1126/science.aau8650
da Silveira WA, Fazelinia H, Rosenthal SB, et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell. 2020;183(5):1185-1201.e20. doi:10.1016/j.cell.2020.11.002
Vitry G, Finch R, Mcstay G, et al. Muscle atrophy phenotype gene expression during spaceflight is linked to a metabolic crosstalk in both the liver and the muscle in mice. iScience. 2022;25(10):105213. doi:10.1016/j.isci.2022.105213
Beheshti A, Chakravarty K, Fogle H, et al. Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver. Sci Rep. 2019;9(1):1-13. doi:10.1038/s41598-019-55869-2
Clement JQ, Lacy SM, Wilson BL. Genome-wide gene expression profiling of microgravity effect on human liver cells. J Gravit Physiol. 2007;14(1):P121-P122.
Jonscher KR, Alfonso-Garcia A, Suhalim JL, et al. Spaceflight activates lipotoxic pathways in mouse liver. PloS One. 2016;11(4):1-26. doi:10.1371/journal.pone.0152877
Merrill AH, Wang E, LaRocque R, et al. Differences in glycogen, lipids, and enzymes in livers from rats flown on COSMOS 2044. J Appl Physiol. 1992;73(2):S142-S147. doi:10.1152/jappl.1992.73.2.S142
Uruno A, Saigusa D, Suzuki T, et al. Nrf2 plays a critical role in the metabolic response during and after spaceflight. Commun Biol. 2021;4(1):1-18. doi:10.1038/s42003-021-02904-6
Kurosawa R, Sugimoto R, Imai H, et al. Impact of spaceflight and artificial gravity on sulfur metabolism in mouse liver: sulfur metabolomic and transcriptomic analysis. Sci Rep. 2021;11(1):1-12. doi:10.1038/s41598-021-01129-1
Liu L, Zhang K, Sandoval H, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015;160(1-2):177-190. doi:10.1016/j.cell.2014.12.019
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116-141. doi:10.1016/j.freeradbiomed.2020.02.025
Karolczak K, Watala C. The mystery behind the pineal gland: melatonin affects the metabolism of cholesterol. Oxid Med Cell Longev. 2019;4531865. doi:10.1155/2019/4531865
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. Mechanisms of melatonin in obesity: a review. Int J Mol Sci. 2021;23(1):218. doi:10.3390/ijms23010218
Mansoori A, Salimi Z, Hosseini SA, et al. The effect of melatonin supplementation on liver indices in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized clinical trials. Complement Ther Med. 2020;52:102398. doi:10.1016/j.ctim.2020.102398
Das N, Mandala A, Naaz S, et al. Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice. J Pineal Res. 2017;62(4):1-21. doi:10.1111/jpi.12404
Ma C, Xiong Y, Han P, et al. Simulated microgravity potentiates hematopoietic differentiation of human pluripotent stem cells and supports formation of 3D hematopoietic cluster. Front Cell Dev Biol. 2022;9(January):1-13. doi:10.3389/fcell.2021.797060
Zong B, Wang Y, Wang J, et al. Effects of long-term simulated microgravity on liver metabolism in rhesus macaques. FASEB J. 2022;36(10):1-17. doi:10.1096/fj.202200544RR
Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012;3(11):e430-e437. doi:10.1038/cddis.2012.171
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-950. doi:10.1152/physrev.00026.2013
Okumura T. Role of lipid droplet proteins in liver steatosis. J Physiol Biochem. 2011;67(4):629-636. doi:10.1007/s13105-011-0110-6
Cheng J, Liu C, Hu K, et al. Ablation of systemic SIRT1 activity promotes nonalcoholic fatty liver disease by affecting liver-mesenteric adipose tissue fatty acid mobilization. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2783-2790. doi:10.1016/j.bbadis.2017.08.004
Grings M, Seminotti B, Karunanidhi A, et al. ETHE1 and MOCS1 deficiencies: disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts. Sci Rep. 2019;9(1):12651. doi:10.1038/s41598-019-49014-2
Busnelli M, Manzini S, Hilvo M, et al. Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoE−/− mice. Sci Rep. 2017;7(March):1-13. doi:10.1038/srep44503
Maruyama H, Kiyono S, Kondo T, Sekimoto T, Yokosuka O. Palmitate-induced regulation of PPARγ via PGC1α: a mechanism for lipid accumulation in the liver in nonalcoholic fatty liver disease. Int J Med Sci. 2016;13(3):169-178. doi:10.7150/ijms.13581
Li L, Fu J, Liu D, et al. Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: involvement of reduced PPARγ expression. Redox Biol. 2020;30(December 2019):101412. doi:10.1016/j.redox.2019.101412
Zhang C, Luo X, Chen J, et al. Osteoprotegerin promotes liver steatosis by targeting the ERK-PPAR-g-CD36 pathway. Diabetes. 2019;68(10):1902-1914. doi:10.2337/db18-1055
Cui K, Zhang L, La X, et al. Ferulic acid and P-Coumaric acid synergistically attenuate non-alcoholic fatty liver disease through HDAC1/PPARG-mediated free fatty acid uptake. Int J Mol Sci. 2022;23(23):15297. doi:10.3390/ijms232315297
Schadinger SE, Bucher NLR, Schreiber BM, Farmer SR. PPARγ2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab. 2005;288(6):E1195-E1205. doi:10.1152/ajpendo.00513.2004
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Protective role of melatonin in mitochondrial dysfunction and related disorders. Arch Toxicol. 2015;89(6):923-939. doi:10.1007/s00204-015-1475-z
Liu L, MacKenzie KR, Putluri N, Maletić-Savatić M, Bellen HJ. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 2017;26(5):719-737.e6. doi:10.1016/j.cmet.2017.08.024
Acharya A, Nemade H, Papadopoulos S, et al. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience. 2022;25(7):104577. doi:10.1016/j.isci.2022.104577
Sun LF, Yang YL, Wang MY, et al. Inhibition of Col6a5 improve lipid metabolism disorder in dihydrotestosterone-induced hyperandrogenic mice. Front Cell Dev Biol. 2021;9(May):1-13. doi:10.3389/fcell.2021.669189
Liu Y, Xu W, Zhai T, You J, Chen Y. Silibinin ameliorates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway. Acta Pharm Sin B. 2019;9(4):745-757. doi:10.1016/j.apsb.2019.02.006
Markin A, Strogonova L, Balashov O, Polyakov V, Tigner T. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights. Acta Astronaut. 1998;42(1-8):247-253. doi:10.1016/S0094-5765(98)00121-0
Goda T, Takase S, Yokogoshi H, Mita T, Isemura M, Hoshi T. Changes in hepatic metabolism through simulated weightlessness: decrease of glycogen and increase of lipids following prolonged immobilization in the rat. Res Exp Med. 1991;191(1):189-199. doi:10.1007/BF02576674
Matsusue K, Haluzik M, Lambert G, et al. Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003;111(5):737-747. doi:10.1172/JCI200317223
Yu S, Matsusue K, Kashireddy P, et al. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression. J Biol Chem. 2003;278(1):498-505. doi:10.1074/jbc.M210062200
Zhang C, Li L, Jiang Y, et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J. 2018;32(8):4444-4458. doi:10.1096/fj.201700208RR
Motomura W, Inoue M, Ohtake T, et al. Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun. 2006;340(4):1111-1118. doi:10.1016/j.bbrc.2005.12.121
Koonen DPY, Jacobs RL, Febbraio M, et al. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes. 2007;56(12):2863-2871. doi:10.2337/db07-0907
Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177-197. doi:10.1002/cphy.c130024
Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab. 2009;296(6):E1195-E1209. doi:10.1152/ajpendo.90958.2008
Moran MM, Stein TP, Wade CE. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity. Exp Biol Med. 2001;226(8):740-745. doi:10.1177/153537020222600805
Pace N, Smith A. Scaling of metabolic rate on body mass in small mammals at 2.0 g. Physiologist. 1983;26(6):S125-S126.
Abe C, Katayama C, Horii K, et al. Changes in metabolism and vestibular function depend on gravitational load in mice. J Appl Physiol. 2023;134(1):10-17. doi:10.1152/japplphysiol.00555.2022
Blaber EA, Pecaut MJ, Jonscher KR. Spaceflight activates autophagy programs and the proteasome in mouse liver. Int J Mol Sci. 2017;18(10):2062. doi:10.3390/ijms18102062
Hoogenraad N. Mitochondria: In sickness and in health. Today's Life Sci. 1990;2(2):37-39. doi:10.1016/j.cell.2012.02.035.Mitochondria
Galloway CA, Lee H, Nejjar S, et al. Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes. 2012;61(8):2093-2104. doi:10.2337/db11-1640
Galloway CA, Lee H, Brookes PS, Yoon Y. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol. 2014;307(6):G632-G641. doi:10.1152/ajpgi.00182.2014
Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 2018;155(3):629-647. doi:10.1053/j.gastro.2018.06.083
Ikegame M, Hattori A, Tabata MJ, et al. Melatonin is a potential drug for the prevention of bone loss during space flight. J Pineal Res. 2019;67(3):1-13. doi:10.1111/jpi.12594
Tian J, Wu J, Chen X, et al. BHLHE40, a third transcription factor required for insulin induction of SREBP-1c mRNA in rodent liver. eLife. 2018;7:1-18. doi:10.7554/eLife.36826

Auteurs

Yue Xiong (Y)

Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chiyuan Ma (C)

Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Qin Li (Q)

Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Wenya Zhang (W)

Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Huashan Zhao (H)

Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Peigen Ren (P)

Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Ke Zhang (K)

Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, China.

Xiaohua Lei (X)

Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Articles similaires

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia.

Lisa Demoen, Filip Matthijssens, Lindy Reunes et al.
1.00
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Animals Mice Humans Cell Line, Tumor
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism

Classifications MeSH