Osteogenic stimulation of osteoprogenitors by putamen ovi peptides and hyaluronic acid.


Journal

Head & face medicine
ISSN: 1746-160X
Titre abrégé: Head Face Med
Pays: England
ID NLM: 101245792

Informations de publication

Date de publication:
08 Aug 2023
Historique:
received: 26 04 2023
accepted: 26 07 2023
medline: 10 8 2023
pubmed: 9 8 2023
entrez: 8 8 2023
Statut: epublish

Résumé

Eggshell peptides (EP) majorly contribute to rapid bone building in chicks, wherefore this paper investigated their potential for stimulating osteogenesis in vitro. In this study, the effects of EP, also called putamen ovi peptides and a combination of hyaluronic acid with EP in cell culture medium were tested towards proliferation, differentiation, gene expression and mineralization of bovine osteoprogenitors and primary human osteoblasts. The influence of EP at concentrations of 0.005 g/L, 0.5 g/L and 0.5 g/L with 0.25% hyaluronic acid was analyzed using immunocytochemical staining of bone-specific matrix proteins, namely collagen type I, osteonectin, osteopontin and osteocalcin, to prove osteoblastic differentiation. Additionally, Richardson-staining was performed. All tests revealed a superior osteoblastic differentiation with EP at 0.5 g/L after 5 days of cultivation. Hyaluronic acid alone showed controversial results and partially constrained osteoblastic differentiation in combination with EP to a level as low as for pure EP at 0.005 g/L. Of particular interest is the osteoblast-typical mineralization, as an important indicator of bone formation, which was measured indirectly via the calcium concentration after cultivation over 4 weeks. The mineralization showed an increase by a factor of 286 during the cultivation of primary human osteoblasts with hyaluronic acid and EP. Meanwhile, cell cultures treated with EP (0.5 g/L) only showed an 80-fold increase in calcium concentration.The influence of EP (0.5 g/L) on primary human osteoblasts was investigated by gene expression after 2 weeks of cultivation. Microarray and qRT-PCR analysis showed a strongly increased expression of main important genes in bone formation, bone regeneration and the physiological bone remodelling processes. Namely, BMP 2, osteopontin and the matrix metalloproteinases 1 and 9, were present during in vitro osteoprogenitor culture with EP. By explicitly underlining the potential of eggshell peptides for stimulating osteogenesis, as well as emphasizing complex and controversial interaction with hyaluronan, this manuscript is relevant for developing new functionalized biomaterials for bone regeneration.

Identifiants

pubmed: 37553683
doi: 10.1186/s13005-023-00380-3
pii: 10.1186/s13005-023-00380-3
pmc: PMC10410967
doi:

Substances chimiques

Osteopontin 106441-73-0
Hyaluronic Acid 9004-61-9
Calcium SY7Q814VUP
Peptides 0
Osteocalcin 104982-03-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

34

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Agarwal S, Duffy B, Curtin J, Jaiswal S. Effect of high- and low-molecular-weight hyaluronic-acid-functionalized-AZ31 Mg and Ti Alloys on proliferation and differentiation of osteoblast cells. ACS Biomater Sci Eng. 2018;4(11):3874–84. https://doi.org/10.1021/acsbiomaterials.8b00968 .
doi: 10.1021/acsbiomaterials.8b00968 pubmed: 33429610
Al-Maawi S, Rother S, Halfter N, Fiebig KM, Moritz J, Moeller S, et al. Covalent linkage of sulfated hyaluronan to the collagen scaffold Mucograft® enhances scaffold stability and reduces proinflammatory macrophage activation in vivo. Bioact Mater. 2022;8:420–34. https://doi.org/10.1016/j.bioactmat.2021.06.008 .
doi: 10.1016/j.bioactmat.2021.06.008 pubmed: 34541411
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81. https://doi.org/10.1016/s0142-9612(99)00242-2 .
doi: 10.1016/s0142-9612(99)00242-2 pubmed: 10711964
Asparuhova MB, Kiryak D, Eliezer M, Mihov D, Sculean A. Activity of two hyaluronan preparations on primary human oral fibroblasts. J Periodontal Res. 2018;54(1):33–45. https://doi.org/10.1111/jre.12602 .
doi: 10.1111/jre.12602 pubmed: 30264516 pmcid: 6586051
Asparuhova MB, Chappuis V, Stähli A, Buser D, Sculean A. Role of hyaluronan in regulating self-renewal and osteogenic differentiation of mesenchymal stromal cells and pre-osteoblasts. Clin Oral Investig. 2020;24(11):3923–37. https://doi.org/10.1007/s00784-020-03259-8 .
doi: 10.1007/s00784-020-03259-8 pubmed: 32236725 pmcid: 7544712
Bronner F, Farach-Carson MC, Rubin J. Bone Resorption. 1st ed. London: Springer London; Imprint: Springer; 2005.
doi: 10.1007/b136184
Chang Y-L, Lo Y-J, Feng S-W, Huang Y-C, Tsai H-Y, Lin C-T, et al. Bone healing improvements using hyaluronic acid and hydroxyapatite/beta-tricalcium phosphate in combination: an animal study. Biomed Res Int. 2016;2016:8301624. https://doi.org/10.1155/2016/8301624 .
doi: 10.1155/2016/8301624 pubmed: 28070520 pmcid: 5192297
Dupoirieux L. Ostrich eggshell as a bone substitute: a preliminary report of its biological behaviour in animals–a possibility in facial reconstructive surgery. Br J Oral Maxillofac Surg. 1999;37(6):467–71. https://doi.org/10.1054/bjom.1999.0041 .
doi: 10.1054/bjom.1999.0041 pubmed: 10687909
Dupoirieux L, Pourquier D, Neves M, Téot L. Resorption kinetics of eggshell: an in vivo study. J Craniofac Surg. 2001;12(1):53–8. https://doi.org/10.1097/00001665-200101000-00009 .
doi: 10.1097/00001665-200101000-00009 pubmed: 11314188
Durmuş E, Celik I, Aydin MF, Yildirim G, Sur E. Evaluation of the biocompatibility and osteoproductive activity of ostrich eggshell powder in experimentally induced calvarial defects in rabbits. J Biomed Mater Res B Appl Biomater. 2008;86(1):82–9. https://doi.org/10.1002/jbm.b.30990 .
doi: 10.1002/jbm.b.30990 pubmed: 18076098
Eliezer M, Imber J-C, Sculean A, Pandis N, Teich S. Hyaluronic acid as adjunctive to non-surgical and surgical periodontal therapy: a systematic review and meta-analysis. Clin Oral Investig. 2019;23(9):3423–35. https://doi.org/10.1007/s00784-019-03012-w .
doi: 10.1007/s00784-019-03012-w pubmed: 31338632
Farrokhi V, Chabot JR, Neubert H, Yang Z. Assessing the feasibility of neutralizing osteopontin with various therapeutic antibody modalities. Sci Rep. 2018;8(1):7781. https://doi.org/10.1038/s41598-018-26187-w .
doi: 10.1038/s41598-018-26187-w pubmed: 29773891 pmcid: 5958109
Filvaroff EH, Guillet S, Zlot C, Bao M, Ingle G, Steinmetz H, et al. Stanniocalcin 1 alters muscle and bone structure and function in transgenic mice. Endocrinology. 2002;143(9):3681–90. https://doi.org/10.1210/en.2001-211424 .
doi: 10.1210/en.2001-211424 pubmed: 12193584
Greco RM, Iocono JA, Ehrlich HP. Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J Cell Physiol. 1998;177(3):465–73. https://doi.org/10.1002/(SICI)1097-4652(199812)177:3%3c465::AID-JCP9%3e3.0.CO;2-5 .
doi: 10.1002/(SICI)1097-4652(199812)177:3<465::AID-JCP9>3.0.CO;2-5 pubmed: 9808154
Halloran D, Durbano HW, Nohe A. Bone morphogenetic protein-2 in development and bone homeostasis. J Dev Biol. 2020. https://doi.org/10.3390/jdb8030019 .
doi: 10.3390/jdb8030019 pubmed: 32933207 pmcid: 7557435
Huang L, Cheng YY, Koo PL, Lee KM, Qin L, Cheng JCY, Kumta SM. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A. 2003;66(4):880–4. https://doi.org/10.1002/jbm.a.10535 .
doi: 10.1002/jbm.a.10535 pubmed: 12926041
Kasugai S, Nagata T, Sodek J. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol. 1992;152(3):467–77. https://doi.org/10.1002/jcp.1041520305 .
doi: 10.1002/jcp.1041520305 pubmed: 1510790
King SR, Hickerson WL, Proctor KG. Beneficial actions of exogenous hyaluronic acid on wound healing. Surgery. 1991;109(1):76–84.
pubmed: 1984639
Krane SM. Is collagenase (matrix metalloproteinase-1) necessary for bone and other connective tissue remodeling? Clin Orthop Relat Res. 1995;313:47–53.
Kyyak S, Pabst A, Heimes D, Kämmerer PW. The influence of hyaluronic acid biofunctionalization of a bovine bone substitute on osteoblast activity in vitro. Materials (Basel). 2021. https://doi.org/10.3390/ma14112885 .
doi: 10.3390/ma14112885 pubmed: 34072146
Laurent UB, Fraser JR, Engström-Laurent A, Reed RK, Dahl LB, Laurent TC. Catabolism of hyaluronan in the knee joint of the rabbit. Matrix. 1992;12(2):130–6. https://doi.org/10.1016/s0934-8832(11)80054-5 .
doi: 10.1016/s0934-8832(11)80054-5 pubmed: 1603035
Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6(7):2397–404.
doi: 10.1096/fasebj.6.7.1563592 pubmed: 1563592
Li L, Lee J, Cho Y-D, Kim S, Seol Y-J, Lee Y-M, Koo K-T. The optimal dosage of hyaluronic acid for bone regeneration in rat calvarial defects. J Periodontal Implant Sci. 2022. https://doi.org/10.5051/jpis.2203000150 .
doi: 10.5051/jpis.2203000150 pubmed: 36468487 pmcid: 10465808
Manferdini C, Guarino V, Zini N, Raucci MG, Ferrari A, Grassi F, et al. Mineralization behavior with mesenchymal stromal cells in a biomimetic hyaluronic acid-based scaffold. Biomaterials. 2010;31(14):3986–96. https://doi.org/10.1016/j.biomaterials.2010.01.148 .
doi: 10.1016/j.biomaterials.2010.01.148 pubmed: 20172605
Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem. 2001;129(1):133–8. https://doi.org/10.1093/oxfordjournals.jbchem.a002824 .
doi: 10.1093/oxfordjournals.jbchem.a002824 pubmed: 11134967
Neunzehn J. Entwicklung eines bioinspirierten Knochenregenerationsmaterials auf Basis von Putamen Ovi und Hyaluronsäure [Dissertation]. TU Dresden: Dresden; 2012.
Neunzehn J, Lüttenberg B, Wiesmann H-P. Investigation of biomaterials by human epithelial gingiva cells: an in vitro study. Head Face Med. 2012;8:35. https://doi.org/10.1186/1746-160X-8-35 .
doi: 10.1186/1746-160X-8-35 pubmed: 23241143 pmcid: 3549823
Neunzehn J, Szuwart T, Wiesmann H-P. Eggshells as natural calcium carbonate source in combination with hyaluronan as beneficial additives for bone graft materials, an in vitro study. Head Face Med. 2015;11:12. https://doi.org/10.1186/s13005-015-0070-0 .
doi: 10.1186/s13005-015-0070-0 pubmed: 25885793 pmcid: 4436844
Nys Y, Gautron J, McKee MD, Garcia-Ruiz JM, Hincke MT. Biochemical and functional characterisation of eggshell matrix proteins in hens. Worlds Poult Sci J. 2001;57(4):401–13. https://doi.org/10.1079/WPS20010029 .
doi: 10.1079/WPS20010029
Opris H, Dinu C, Baciut M, Baciut G, Mitre I, Crisan B, et al. The influence of eggshell on bone regeneration in preclinical in vivo studies. Biology (Basel). 2020. https://doi.org/10.3390/biology9120476 .
doi: 10.3390/biology9120476 pubmed: 33352877
Panheleux M, Bain M, Fernandez MS, Morales I, Gautron J, Arias JL, et al. Organic matrix composition and ultrastructure of eggshell: a comparative study. Br Poult Sci. 1999;40(2):240–52. https://doi.org/10.1080/00071669987665 .
doi: 10.1080/00071669987665 pubmed: 10465392
Park J-W, Jang J-H, Bae S-R, An C-H, Suh J-Y. Bone formation with various bone graft substitutes in critical-sized rat calvarial defect. Clin Oral Implants Res. 2009;20(4):372–8. https://doi.org/10.1111/j.1600-0501.2008.01602.x .
doi: 10.1111/j.1600-0501.2008.01602.x pubmed: 19309771
Pilloni A, Bernard GW. The effect of hyaluronan on mouse intramembranous osteogenesis in vitro. Cell Tissue Res. 1998;294(2):323–33. https://doi.org/10.1007/s004410051182 .
doi: 10.1007/s004410051182 pubmed: 9799448
Pilloni A, Zeza B, Kuis D, Vrazic D, Domic T, Olszewska-Czyz I, et al. Treatment of residual periodontal pockets using a hyaluronic acid-based gel: a 12 month multicenter randomized triple-blinded clinical trial. Antibiotics (Basel). 2021. https://doi.org/10.3390/antibiotics10080924 .
doi: 10.3390/antibiotics10080924 pubmed: 34680773
Pines M, Knopov V, Bar A. Involvement of osteopontin in egg shell formation in the laying chicken. Matrix Biol. 1995;14(9):765–71. https://doi.org/10.1016/s0945-053x(05)80019-8 .
doi: 10.1016/s0945-053x(05)80019-8 pubmed: 8785591
Reyes-Grajeda JP, Moreno A, Romero A. Crystal structure of ovocleidin-17, a major protein of the calcified Gallus gallus eggshell: implications in the calcite mineral growth pattern. J Biol Chem. 2004;279(39):40876–81. https://doi.org/10.1074/jbc.M406033200 .
doi: 10.1074/jbc.M406033200 pubmed: 15263013
Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res. 1996;324:39–46.
doi: 10.1097/00003086-199603000-00006
Rooney P, Wang M, Kumar P, Kumar S. Angiogenic oligosaccharides of hyaluronan enhance the production of collagens by endothelial cells. J Cell Sci. 1993;105(Pt 1):213–8. https://doi.org/10.1242/jcs.105.1.213 .
doi: 10.1242/jcs.105.1.213 pubmed: 7689574
Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone. 1995;16(1):9–15. https://doi.org/10.1016/s8756-3282(94)00001-8 .
doi: 10.1016/s8756-3282(94)00001-8 pubmed: 7742090
Sattar A, Rooney P, Kumar S, Pye D, West DC, Scott I, Ledger P. Application of angiogenic oligosaccharides of hyaluronan increases blood vessel numbers in rat skin. J Invest Dermatol. 1994;103(4):576–9. https://doi.org/10.1111/1523-1747.ep12396880 .
doi: 10.1111/1523-1747.ep12396880 pubmed: 7523533
Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699–715. https://doi.org/10.1016/j.ejcb.2006.05.009 .
doi: 10.1016/j.ejcb.2006.05.009 pubmed: 16822580
Yoshiko Y, Maeda N, Aubin JE. Stanniocalcin 1 stimulates osteoblast differentiation in rat calvaria cell cultures. Endocrinology. 2003;144(9):4134–43. https://doi.org/10.1210/en.2003-0130 .
doi: 10.1210/en.2003-0130 pubmed: 12933688
Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224–39. https://doi.org/10.1016/j.ijbiomac.2019.10.169 .
doi: 10.1016/j.ijbiomac.2019.10.169 pubmed: 31751713
Zhao N, Wang X, Qin L, Guo Z, Li D. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro. Biochem Biophys Res Commun. 2015;465(3):569–74. https://doi.org/10.1016/j.bbrc.2015.08.061 .
doi: 10.1016/j.bbrc.2015.08.061 pubmed: 26284973
Zhu XL, Ganss B, Goldberg HA, Sodek J. Synthesis and processing of bone sialoproteins during de novo bone formation in vitro. Biochem Cell Biol. 2001;79(6):737–46.
doi: 10.1139/o01-146 pubmed: 11800014

Auteurs

Jörg Neunzehn (J)

Geistlich Biomaterials Vertriebsgesellschaft mbH, Schöckstraße 4, 76534, Baden-Baden, Germany.

Franziska Alt (F)

Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany.

Hans-Peter Wiesmann (HP)

Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany.

Benjamin Kruppke (B)

Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany. benjamin.kruppke@tu-dresden.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH