Integrative omics approaches to advance rare disease diagnostics.
RNA sequencing
episignatures
methylomics
multi-omics
proteomics
rare genetic disorders
Journal
Journal of inherited metabolic disease
ISSN: 1573-2665
Titre abrégé: J Inherit Metab Dis
Pays: United States
ID NLM: 7910918
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
revised:
26
07
2023
received:
13
03
2023
accepted:
27
07
2023
medline:
8
9
2023
pubmed:
9
8
2023
entrez:
9
8
2023
Statut:
ppublish
Résumé
Over the past decade high-throughput DNA sequencing approaches, namely whole exome and whole genome sequencing became a standard procedure in Mendelian disease diagnostics. Implementation of these technologies greatly facilitated diagnostics and shifted the analysis paradigm from variant identification to prioritisation and evaluation. The diagnostic rates vary widely depending on the cohort size, heterogeneity and disease and range from around 30% to 50% leaving the majority of patients undiagnosed. Advances in omics technologies and computational analysis provide an opportunity to increase these unfavourable rates by providing evidence for disease-causing variant validation and prioritisation. This review aims to provide an overview of the current application of several omics technologies including RNA-sequencing, proteomics, metabolomics and DNA-methylation profiling for diagnostics of rare genetic diseases in general and inborn errors of metabolism in particular.
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
824-838Informations de copyright
© 2023 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.
Références
Bello MO, Garla VV. Gigantism and acromegaly. StatPearls [Internet]. StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/books/NBK538261/
Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008;83(5):610-615.
Köhler S, Vasilevsky NA, Engelstad M, et al. The human phenotype ontology in 2017. Nucleic Acids Res. 2017;45(D1):D865-D876.
Köhler S, Schulz MH, Krawitz P, et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet. 2009;85(4):457-464.
Greene D, Richardson S, Turro E. ontologyX: a suite of R packages for working with ontological data. Bioinformatics. 2017;33(7):1104-1106.
Deng Y, Gao L, Wang B, Guo X. HPOSim: an R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology. PLoS One. 2015;10(2):e0115692.
Zhai W, Huang X, Shen N, Zhu S. Phen2Disease: a phenotype-driven semantic similarity-based integrated model for disease and gene prioritization [Internet]. Brief Bioinform. 2023;24(4):bbad172. doi:10.1093/bib/bbad172/
Birgmeier J, Haeussler M, Deisseroth CA, et al. AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature. Sci Transl Med. 2020;12(544):eaau9113.
Smedley D, Jacobsen JOB, Jäger M, et al. Next-generation diagnostics and disease-gene discovery with the exomiser. Nat Protoc. 2015;10(12):2004-2015.
Sifrim A, Popovic D, Tranchevent LC, et al. eXtasy: variant prioritization by genomic data fusion. Nat Methods. 2013;10(11):1083-1084.
Li Q, Zhao K, Bustamante CD, Ma X, Wong WH. Xrare: a machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis. Genet Med. 2019;21(9):2126-2134.
Wenger AM, Guturu H, Bernstein JA, Bejerano G. Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. Genet Med. 2017;19(2):209-214.
Eldomery MK, Coban-Akdemir Z, Harel T, et al. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med. 2017;9(1):26.
Bruel AL, Nambot S, Quéré V, et al. Increased diagnostic and new genes identification outcome using research reanalysis of singleton exome sequencing. Eur J Hum Genet. 2019;27(10):1519-1531.
Stenton SL, Shimura M, Piekutowska-Abramczuk D, et al. Diagnosing pediatric mitochondrial disease: lessons from 2,000 exomes [Internet]. medRxiv. 2021. doi:10.1101/2021.06.21.21259171v1
Ferreira CR, Rahman S, Keller M, Zschocke J, Group IA. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis. 2021;44(1):164-177.
Tarailo-Graovac M, Shyr C, Ross CJ, et al. Exome sequencing and the management of neurometabolic disorders. N Engl J Med. 2016;374(23):2246-2255.
Falk MJ, Shen L, Gonzalez M, et al. Mitochondrial disease sequence data resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol Genet Metab. 2015;114(3):388-396.
Lee JJY, Wasserman WW, Hoffmann GF, van Karnebeek CDM, Blau N. Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism. Genet Med. 2018;20(1):151-158.
Zastrow DB, Baudet H, Shen W, et al. Unique aspects of sequence variant interpretation for inborn errors of metabolism (IEM): the ClinGen IEM working Group and the phenylalanine hydroxylase gene. Hum Mutat. 2018;39(11):1569-1580.
Rahman J, Noronha A, Thiele I, Rahman S. Leigh map: a novel computational diagnostic resource for mitochondrial disease. Ann Neurol. 2017;81(1):9-16.
Rahman J, Rahman S. The utility of phenomics in diagnosis of inherited metabolic disorders. Clin Med. 2019;19(1):30-36.
Lee JJY, Gottlieb MM, Lever J, et al. Text-based phenotypic profiles incorporating biochemical phenotypes of inborn errors of metabolism improve phenomics-based diagnosis. J Inherit Metab Dis. 2018;41(3):555-562.
Kremer LS, Bader DM, Mertes C, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8(1):15824.
Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9(386):eaal5209.
Gonorazky HD, Naumenko S, Ramani AK, et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease. Am J Hum Genet. 2019;104(3):466-483.
Frésard L, Smail C, Ferraro NM, et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat Med. 2019;25(6):911-919.
Lee H, Huang AY, Kai WL, et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med. 2020;22(3):490-499.
Lee M, Kwong AKY, Chui MMC, et al. Diagnostic potential of the amniotic fluid cells transcriptome in deciphering mendelian disease: a proof-of-concept. Npj Genomic Med. 2022;7(1):1-10.
Murdock DR, Dai H, Burrage LC, et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J Clin Invest. 2021;131(1):e141500. https://www.jci.org/articles/view/141500
Yépez VA, Gusic M, Kopajtich R, et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med. 2022;14(1):38.
Kopajtich R, Smirnov D, Stenton SL, et al. Integration of proteomics with genomics and transcriptomics increases the diagnostic rate of Mendelian disorders [Internet]. medRxiv. 2021;21253187. doi:10.1101/2021.03.09.21253187v2
Rentas S, Rathi KS, Kaur M, et al. Diagnosing Cornelia de Lange syndrome and related neurodevelopmental disorders using RNA sequencing. Genet Med. 2020;22(5):927-936.
von Elsner L, Chai G, Schneeberger PE, et al. Biallelic FRA10AC1 variants cause a neurodevelopmental disorder with growth retardation. Brain. 2022;145(4):1551-1563.
Hong SE, Kneissl J, Cho A, et al. Transcriptome-based variant calling and aberrant mRNA discovery enhance diagnostic efficiency for neuromuscular diseases. J Med Genet. 2022;59(11):1075-1081.
Hiraide T, Shimizu K, Miyamoto S, et al. Genome sequencing and RNA sequencing of urinary cells reveal an intronic FBN1 variant causing aberrant splicing. J Hum Genet. 2022;67(7):387-392.
Dekker J, Schot R, Bongaerts M, et al. Web-accessible application for identifying pathogenic transcripts with RNA-seq: increased sensitivity in diagnosis of neurodevelopmental disorders. Am J Hum Genet. 2023;110:251-272. https://www.sciencedirect.com/science/article/pii/S0002929722005493
Forny P, Bonilla X, Lamparter D, et al. Integrated multi-omics reveals anaplerotic rewiring in methylmalonyl-CoA mutase deficiency. Nat Metab. 2023;5(1):80-95.
Colin E, Duffourd Y, Tisserant E, et al. OMIXCARE: OMICS technologies solved about 33% of the patients with heterogeneous rare neuro-developmental disorders and negative exome sequencing results and identified 13% additional candidate variants. Front Cell Dev Biol. 2022;10:10. doi:10.3389/fcell.2022.1021785
Smirnov D, Schlieben LD, Peymani F, Berutti R, Prokisch H. Guidelines for clinical interpretation of variant pathogenicity using RNA phenotypes. Hum Mutat. 2022;43(8):1056-1070.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
Richter F, Hoffman GE, Manheimer KB, et al. ORE identifies extreme expression effects enriched for rare variants. Bioinformatics. 2019;35(20):3906-3912.
Brechtmann F, Mertes C, Matusevičiūtė A, et al. OUTRIDER: a statistical method for detecting aberrantly expressed genes in RNA sequencing data. Am J Hum Genet. 2018;103(6):907-917.
Salkovic E, Bensmail H. A novel Bayesian outlier score based on the negative binomial distribution for detecting aberrantly expressed genes in RNA-Seq gene expression count data. IEEE Access. 2021;9:75789-75800.
Labory J, Le Bideau G, Pratella D, et al. ABEILLE: a novel method for ABerrant expression identification empLoying machine LEarning from RNA-sequencing data. Bioinformatics. 2022;38(20):4754-4761.
Mohammadi P, Castel SE, Cummings BB, et al. Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science. 2019;366(6463):351-356.
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413-1415.
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176(3):535-548.e24.
Mertes C, Scheller IF, Yépez VA, et al. Detection of aberrant splicing events in RNA-seq data using FRASER. Nat Commun. 2021;12(1):529.
Kamps-Hughes N, Carlton VEH, Fresard L, et al. A systematic method for detecting abnormal mRNA splicing and assessing its clinical impact in individuals undergoing genetic testing for hereditary cancer syndromes. J Mol Diagn. 2023;25(3):156-167. https://www.jmdjournal.org/article/S1525-1578(22)00348-8/fulltext#relatedArticles
Halperin RF, Hegde A, Lang JD, et al. Improved methods for RNAseq-based alternative splicing analysis. Sci Rep. 2021;11(1):10740.
Jenkinson G, Li YI, Basu S, Cousin MA, Oliver GR, Klee EW. LeafCutterMD: an algorithm for outlier splicing detection in rare diseases. Bioinformatics. 2020;36(17):4609-4615.
Ferraro NM, Strober BJ, Einson J, et al. Transcriptomic signatures across human tissues identify functional rare genetic variation. Science. 2020;369(6509):eaaz5900.
Zhang D, Reynolds RH, Garcia-Ruiz S, et al. Detection of pathogenic splicing events from RNA-sequencing data using dasper [Internet]. bioRxiv. 2021;437534. doi:10.1101/2021.03.29.437534v1
Li YI, Knowles DA, Humphrey J, et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet. 2018;50(1):151-158.
Dai X, Theobard R, Cheng H, Xing M, Zhang J. Fusion genes: a promising tool combating against cancer. Biochim Biophys Acta BBA-Rev Cancer. 2018;1869(2):149-160.
van Heesch S, Simonis M, van Roosmalen MJ, et al. Genomic and functional overlap between somatic and germline chromosomal rearrangements. Cell Rep. 2014;9(6):2001-2010.
Nothwang HG, Kim HG, Aoki J, et al. Functional hemizygosity of PAFAH1B3 due to a PAFAH1B3-CLK2 fusion gene in a female with mental retardation, ataxia and atrophy of the brain. Hum Mol Genet. 2001;10(8):797-806.
Mayo S, Monfort S, Roselló M, et al. Chimeric genes in deletions and duplications associated with intellectual disability. Int J Genomics. 2017;24(2017):e4798474.
Rippey C, Walsh T, Gulsuner S, et al. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am J Hum Genet. 2013;93(4):697-710.
Boone PM, Yuan B, Campbell IM, et al. The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated CNV alleles. Am J Hum Genet. 2014;95(2):143-161.
Ceroni F, Sagar A, Simpson NH, et al. A deletion involving CD38 and BST1 results in a fusion transcript in a patient with autism and asthma. Autism Res. 2014;7(2):254-263.
Bertelsen B, Melchior L, Jensen LR, et al. A t(3;9)(q25.1;q34.3) translocation leading to OLFM1 fusion transcripts in Gilles de la Tourette syndrome, OCD and ADHD. Psychiatry Res. 2015;225(3):268-275.
Choi HY, Jo H, Zhao X, et al. SCISSOR: a framework for identifying structural changes in RNA transcripts. Nat Commun. 2021;12(1):286.
Kim D, Salzberg SL. TopHat-fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12(8):R72.
Oliver GR, Tang X, Schultz-Rogers LE, et al. A tailored approach to fusion transcript identification increases diagnosis of rare inherited disease. PLoS One. 2019;14(10):e0223337.
Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet. 2018;19(5):286-298.
Bahlo M, Bennett MF, Degorski P, Tankard RM, Delatycki MB. Lockhart PJ. Recent advances in the detection of repeat expansions with short-read next-generation sequencing [Internet]. F1000Research. 2018;7:F1000 Faculty Rev-736. https://f1000research.com/articles/7-736
La Spada AR, Taylor JP. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet. 2010;11(4):247-258.
Khristich AN, Mirkin SM. On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J Biol Chem. 2020;295(13):4134-4170.
Fearnley LG, Bennett MF, Bahlo M. Detection of repeat expansions in large next generation DNA and RNA sequencing data without alignment. Sci Rep. 2022;12(1):13124.
Tewhey R, Bansal V, Torkamani A, Topol EJ, Schork NJ. The importance of phase information for human genomics. Nat Rev Genet. 2011;12(3):215-223.
Castel SE, Mohammadi P, Chung WK, Shen Y, Lappalainen T. Rare variant phasing and haplotypic expression from RNA sequencing with phASER. Nat Commun. 2016;7(1):12817.
Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet. 2018;19(6):329-346.
Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):265-270.
Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133-138.
Tilgner H, Jahanbani F, Blauwkamp T, et al. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat Biotechnol. 2015;33(7):736-742.
Anvar SY, Allard G, Tseng E, et al. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biol. 2018;19(1):46.
Tardaguila M, de la Fuente L, Marti C, et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 2018;28(3):396-411.
Workman RE, Tang AD, Tang PS, et al. Nanopore native RNA sequencing of a human poly(a) transcriptome. Nat Methods. 2019;16(12):1297-1305.
Tilgner H, Grubert F, Sharon D, Snyder MP. Defining a personal, allele-specific, and single-molecule long-read transcriptome. Proc Natl Acad Sci. 2014;111(27):9869-9874.
Aguet F, Brown AA, Castel SE, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213.
Glinos DA, Garborcauskas G, Hoffman P, et al. Transcriptome variation in human tissues revealed by long-read sequencing. Nature. 2022;608(7922):353-359.
Lucas MC, Novoa EM. Long-read sequencing in the era of epigenomics and epitranscriptomics. Nat Methods. 2023;20(1):25-29.
Bonder MJ, Smail C, Gloudemans MJ, et al. Identification of rare and common regulatory variants in pluripotent cells using population-scale transcriptomics. Nat Genet. 2021;53(3):313-321.
Gu W, Crawford ED, O'Donovan BD, et al. Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 2016;17(1):41.
Martorella M, Kasela S, Garcia-Flores R, Gokden A, Castel SE, Lappalainen T. Noninvasive, low-cost RNA-sequencing enhances discovery potential of transcriptome studies [Internet]. bioRxiv. 2022;506813. doi:10.1101/2022.09.06.506813v1
Yépez VA, Mertes C, Müller MF, et al. Detection of aberrant gene expression events in RNA sequencing data. Nat Protoc. 2021;16(2):1276-1296.
Wilks C, Zheng SC, Chen FY, et al. recount3: summaries and queries for large-scale RNA-seq expression and splicing. Genome Biol. 2021;22(1):323.
Lachmann A, Torre D, Keenan AB, et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun. 2018;9(1):1366.
Velluva A, Radtke M, Horn S, et al. Phenotype-tissue expression and exploration (PTEE) resource facilitates the choice of tissue for RNA-seq-based clinical genetics studies. BMC Genomics. 2021;22(1):802.
Rowlands CF, Taylor A, Rice G, et al. MRSD: a quantitative approach for assessing suitability of RNA-seq in the investigation of mis-splicing in Mendelian disease. Am J Hum Genet. 2022;109(2):210-222.
Aicher JK, Jewell P, Vaquero-Garcia J, Barash Y, Bhoj EJ. Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq. Genet Med. 2020;22(7):1181-1190.
Cummings BB, Karczewski KJ, Kosmicki JA, et al. Transcript expression-aware annotation improves rare variant interpretation. Nature. 2020;581(7809):452-458.
Jiang L, Wang M, Lin S, et al. A quantitative proteome map of the human body. Cell. 2020;183(1):269-283.e19.
Wang D, Eraslan B, Wieland T, et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol Syst Biol. 2019;15(2):e8503.
Li T, Ferraro N, Strober BJ, et al. The functional impact of rare variation across the regulatory cascade [Internet]. bioRxiv. 2022;507008. doi:10.1101/2022.09.07.507008v1
Wang Z, Yu K, Tan H, et al. 27-Plex tandem mass tag mass spectrometry for profiling brain proteome in Alzheimer's disease. Anal Chem. 2020;92(10):7162-7170.
Grabowski P, Hesse S, Hollizeck S, et al. Proteome analysis of human neutrophil granulocytes from patients with monogenic disease using data-independent acquisition*[S]. Mol Cell Proteomics. 2019;18(4):760-772.
Lake NJ, Webb BD, Stroud DA, et al. Biallelic mutations in MRPS34 Lead to instability of the small Mitoribosomal subunit and Leigh syndrome. Am J Hum Genet. 2017;101(2):239-254.
Pérez-Palma E, Gramm M, Nürnberg P, May P, Lal D. Simple ClinVar: an interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database. Nucleic Acids Res. 2019;47(W1):W99-W105.
Stroud DA, Surgenor EE, Formosa LE, et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538(7623):123-126.
Heide H, Bleier L, Steger M, et al. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 2012;16(4):538-549.
Kiirika L, Behrens C, Braun HP, Colditz F. The mitochondrial Complexome of Medicago truncatula. Front Plant Sci. 2013;4:4. doi:10.3389/fpls.2013.00084
Guerrero-Castillo S, van Strien J, Brandt U, Arnold S. Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome. EMBO J. 2021;40(21):e108648.
Senkler J, Senkler M, Eubel H, et al. The mitochondrial complexome of Arabidopsis thaliana. Plant J. 2017;89(6):1079-1092.
Wittig I, Karas M, Schägger H. High resolution clear native electrophoresis for In-gel functional assays and fluorescence studies of membrane protein complexes*. Mol Cell Proteomics. 2007;6(7):1215-1225.
Wittig I, Malacarne FP. Complexome profiling: assembly and remodeling of protein complexes. Int J Mol Sci. 2021;22(15):7809. https://www.mdpi.com/1422-0067/22/15/7809
Cabrera-Orefice A, Potter A, Evers F, Hevler JF, Guerrero-Castillo S. Complexome profiling-exploring mitochondrial protein complexes in health and disease. Front Cell Dev Biol. 2022;9:796128. doi:10.3389/fcell.2021.796128
Stenton SL, Sheremet NL, Catarino CB, et al. Impaired complex I repair causes recessive Leber's hereditary optic neuropathy. J Clin Invest. 2021;131(6):e138267. https://www.jci.org/articles/view/138267
Thistlethwaite LR, Li X, Burrage LC, et al. Clinical diagnosis of metabolic disorders using untargeted metabolomic profiling and disease-specific networks learned from profiling data. Sci Rep. 2022;12(1):6556.
Graham E, Lee J, Price M, et al. Integration of genomics and metabolomics for prioritization of rare disease variants: a 2018 literature review. J Inherit Metab Dis. 2018;41(3):435-445.
Lydic TA, Goo YH. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin Transl Med. 2018;26(7):4.
Almeida LS, Pereira C, Aanicai R, et al. An integrated multiomic approach as an excellent tool for the diagnosis of metabolic diseases: our first 3720 patients. Eur J Hum Genet. 2022;30(9):1029-1035.
Mussap M, Zaffanello M, Fanos V. Metabolomics: a challenge for detecting and monitoring inborn errors of metabolism. Ann Transl Med. 2018;6(17):338.
DeBerardinis RJ, Keshari KR. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell. 2022;185(15):2678-2689.
Coene KLM, Kluijtmans LAJ, van der Heeft E, et al. Next-generation metabolic screening: targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J Inherit Metab Dis. 2018;41(3):337-353.
van Karnebeek CDM, Wortmann SB, Tarailo-Graovac M, et al. The role of the clinician in the multi-omics era: are you ready? J Inherit Metab Dis. 2018;41(3):571-582.
Wortmann SB, Oud MM, Alders M, et al. How to proceed after “negative” exome: a review on genetic diagnostics, limitations, challenges, and emerging new multiomics techniques. J Inherit Metab Dis. 2022;45(4):663-681.
Liu N, Xiao J, Gijavanekar C, et al. Comparison of untargeted metabolomic profiling vs traditional metabolic screening to identify inborn errors of metabolism. JAMA Netw Open. 2021;4(7):e2114155.
Ching-López A, Martinez-Gonzalez LJ, Arrabal L, et al. Combined genome, transcriptome and metabolome analysis in the diagnosis of childhood cerebellar ataxia. Int J Mol Sci. 2021;22(6):2990.
Graham Linck EJ, Richmond PA, Tarailo-Graovac M, et al. metPropagate: network-guided propagation of metabolomic information for prioritization of metabolic disease genes. Npj Genomic Med. 2020;5(1):1-11.
Hoegen B, Hampstead JE, Engelke UFH, et al. Application of metabolite set enrichment analysis on untargeted metabolomics data prioritises relevant pathways and detects novel biomarkers for inherited metabolic disorders. J Inherit Metab Dis. 2022;45(4):682-695.
Guo L, Milburn MV, Ryals JA, et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci. 2015;112(35):E4901-E4910.
Alaimo JT, Glinton KE, Liu N, et al. Integrated analysis of metabolomic profiling and exome data supplements sequence variant interpretation, classification, and diagnosis. Genet Med. 2020;22(9):1560-1566.
Webb-Robertson BJM, Stratton KG, Kyle JE, et al. Statistically driven metabolite and lipid profiling of patients from the undiagnosed diseases network. Anal Chem. 2020;92(2):1796-1803.
Kyle JE, Stratton KG, Zink EM, et al. A resource of lipidomics and metabolomics data from individuals with undiagnosed diseases. Sci Data. 2021;8(1):114.
Houten SM, Denis S, Te Brinke H, et al. Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia. Hum Mol Genet. 2014;23(18):5009-5016.
Kerkhofs MHPM, Haijes HA, Willemsen AM, et al. Cross-omics: integrating genomics with metabolomics in clinical diagnostics. Metabolites. 2020;10(5):206.
Martinez-Delgado B, Barrero MJ. Epigenomic approaches for the diagnosis of rare diseases. Epigenomes. 2022;6(3):21.
Velasco G, Francastel C. Genetics meets DNA methylation in rare diseases. Clin Genet. 2019;95(2):210-220.
Aref-Eshghi E, Kerkhof J, Pedro VP, et al. Evaluation of DNA methylation Episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am J Hum Genet. 2020;106(3):356-370.
Levy MA, McConkey H, Kerkhof J, et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. Hum Genet Genomics Adv. 2022;3(1):100075.
Haghshenas S, Levy MA, Kerkhof J, et al. Detection of a DNA methylation signature for the intellectual developmental disorder, X-linked, syndromic, Armfield type. Int J Mol Sci. 2021;22(3):1111.
Verberne EA, van der Laan L, Haghshenas S, et al. DNA methylation signature for JARID2-neurodevelopmental syndrome. Int J Mol Sci. 2022;23(14):8001.
Ciolfi A, Aref-Eshghi E, Pizzi S, et al. Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature. Clin Epigenetics. 2020;12(1):7.
Choufani S, McNiven V, Cytrynbaum C, et al. An HNRNPK-specific DNA methylation signature makes sense of missense variants and expands the phenotypic spectrum of Au-Kline syndrome. Am J Hum Genet. 2022;109(10):1867-1884.
Mirza-Schreiber N, Zech M, Wilson R, et al. Blood DNA methylation provides an accurate biomarker of KMT2B-related dystonia and predicts onset. Brain. 2022;145(2):644-654.
Schenkel LC, Aref-Eshghi E, Skinner C, et al. Peripheral blood epi-signature of Claes-Jensen syndrome enables sensitive and specific identification of patients and healthy carriers with pathogenic mutations in KDM5C. Clin Epigenetics. 2018;10(1):21.
Hood RL, Schenkel LC, Nikkel SM, et al. The defining DNA methylation signature of Floating-Harbor syndrome. Sci Rep. 2016;6(1):38803.
Radio FC, Pang K, Ciolfi A, et al. SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females. Am J Hum Genet. 2021;108(3):502-516.
Turinsky AL, Choufani S, Lu K, et al. EpigenCentral: portal for DNA methylation data analysis and classification in rare diseases. Hum Mutat. 2020;41(10):1722-1733.
Van Der Laan L, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics. 2022;14(21):1373-1388.
Episignature analysis of moderate effects and mosaics [Internet]. 2023 https://www.researchsquare.com
Sadikovic B, Levy MA, Kerkhof J, et al. Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders. Genet Med. 2021;23(6):1065-1074.
Barbosa M, Joshi RS, Garg P, et al. Identification of rare de novo epigenetic variations in congenital disorders. Nat Commun. 2018;9(1):2064.
Garg P, Jadhav B, Rodriguez OL, et al. A survey of rare epigenetic variation in 23,116 human genomes identifies disease-relevant Epivariations and CGG expansions. Am J Hum Genet. 2020;107(4):654-669.
Çelik MH, Wagner N, Hölzlwimmer FR, et al. Aberrant splicing prediction across human tissues [Internet]. bioRxiv. 2022;495326. doi:10.1101/2022.06.13.495326v1
Argelaguet R, Velten B, Arnol D, et al. Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14(6):e8124.
Santos A, Colaço AR, Nielsen AB, et al. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol. 2022;40(5):692-702.
Abu Bakar N, Ashikov A, Brum JM, et al. Synergistic use of glycomics and single-molecule molecular inversion probes for identification of congenital disorders of glycosylation type-1. J Inherit Metab Dis. 2022;45(4):769-781.
Ashikov A, Abu Bakar N, Wen XY, et al. Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Hum Mol Genet. 2018;27(17):3029-3045.
Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20(6):341-355.
Reijngoud DJ. Flux analysis of inborn errors of metabolism. J Inherit Metab Dis. 2018;41(3):309-328.
van Harskamp D, Garrelfs SF, Oosterveld MJS, Groothoff JW, van Goudoever JB, Schierbeek H. Development and validation of a new gas chromatography-tandem mass spectrometry method for the measurement of enrichment of Glyoxylate metabolism Analytes in Hyperoxaluria patients using a stable isotope procedure. Anal Chem. 2020;92(2):1826-1832.