Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis.
Journal
Plant physiology
ISSN: 1532-2548
Titre abrégé: Plant Physiol
Pays: United States
ID NLM: 0401224
Informations de publication
Date de publication:
26 Oct 2023
26 Oct 2023
Historique:
received:
12
05
2023
accepted:
06
07
2023
medline:
30
10
2023
pubmed:
9
8
2023
entrez:
9
8
2023
Statut:
ppublish
Résumé
The initial step of oxygenic photosynthesis is the thermodynamically challenging extraction of electrons from water and the release of molecular oxygen. This light-driven process, which is the basis for most life on Earth, is catalyzed by photosystem II (PSII) within the thylakoid membrane of photosynthetic organisms. The biogenesis of PSII requires a controlled step-wise assembly process of which the early steps are considered to be highly conserved between plants and their cyanobacterial progenitors. This assembly process involves auxiliary proteins, which are likewise conserved. In the present work, we used Arabidopsis (Arabidopsis thaliana) as a model to show that in plants, a eukaryote-exclusive assembly factor facilitates the early assembly step, during which the intrinsic antenna protein CP47 becomes associated with the PSII reaction center (RC) to form the RC47 intermediate. This factor, which we named DECREASED ELECTRON TRANSPORT AT PSII (DEAP2), works in concert with the conserved PHOTOSYNTHESIS AFFECTED MUTANT 68 (PAM68) assembly factor. The deap2 and pam68 mutants showed similar defects in PSII accumulation and assembly of the RC47 intermediate. The combined lack of both proteins resulted in a loss of functional PSII and the inability of plants to grow photoautotrophically on the soil. While overexpression of DEAP2 partially rescued the pam68 PSII accumulation phenotype, this effect was not reciprocal. DEAP2 accumulated at 20-fold higher levels than PAM68, together suggesting that both proteins have distinct functions. In summary, our results uncover eukaryotic adjustments to the PSII assembly process, which involve the addition of DEAP2 for the rapid progression from RC to RC47.
Identifiants
pubmed: 37555435
pii: 7239774
doi: 10.1093/plphys/kiad446
pmc: PMC10602607
doi:
Substances chimiques
Photosystem II Protein Complex
0
Arabidopsis Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1970-1986Subventions
Organisme : Max Planck society
Organisme : Deutsche Forschungsgemeinschaft
ID : 437345987
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of American Society of Plant Biologists.
Références
Biochemistry. 2002 Apr 16;41(15):4872-82
pubmed: 11939782
Plant Cell Environ. 2016 Jul;39(7):1524-36
pubmed: 26836813
J Biol Chem. 2008 Dec 12;283(50):34873-9
pubmed: 18854313
Mol Plant. 2017 May 1;10(5):721-734
pubmed: 28286296
Methods Mol Biol. 1998;82:43-8
pubmed: 9664410
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83
pubmed: 17452350
Nat Protoc. 2006;1(1):16-22
pubmed: 17406207
J Biol Chem. 2004 Nov 19;279(47):48620-9
pubmed: 15347679
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Annu Rev Plant Biol. 2015;66:23-48
pubmed: 25746448
Front Plant Sci. 2016 Feb 16;7:168
pubmed: 26909098
Curr Opin Plant Biol. 2012 Jun;15(3):245-51
pubmed: 22386092
Biochem J. 2007 Apr 15;403(2):251-60
pubmed: 17209805
Plant Cell Physiol. 2016 Jul;57(7):1454-1467
pubmed: 27053032
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):E1678-87
pubmed: 25775549
Plant Cell. 2006 Apr;18(4):955-69
pubmed: 16531500
Plant Cell. 1991 Jul;3(7):709-17
pubmed: 1841725
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
Nat Protoc. 2022 Oct;17(10):2326-2353
pubmed: 35931779
Plant Physiol. 2019 Jan;179(1):195-208
pubmed: 30397023
Plant Biotechnol J. 2023 Apr;21(4):711-725
pubmed: 36529916
EMBO J. 1998 Sep 15;17(18):5286-97
pubmed: 9736608
Plant Cell. 2022 Apr 26;34(5):2056-2079
pubmed: 35171295
Nucleic Acids Res. 2019 Jan 8;47(D1):D1218-D1224
pubmed: 30295851
Plant Physiol. 2021 Apr 2;185(3):1111-1130
pubmed: 33793892
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Science. 2003 Aug 1;301(5633):653-7
pubmed: 12893945
Plant J. 2006 Feb;45(4):616-29
pubmed: 16441352
Plant Physiol. 2018 Mar;176(3):2277-2291
pubmed: 29438089
Plant Cell. 2010 Oct;22(10):3439-60
pubmed: 20923938
Plant Physiol. 2018 Apr;176(4):2931-2942
pubmed: 29463774
FEBS Lett. 1997 May 19;408(2):206-10
pubmed: 9187368
Nat Plants. 2018 Aug;4(8):564-575
pubmed: 30061751
Nature. 2016 May 18;534(7605):69-74
pubmed: 27251276
Physiol Plant. 2019 May;166(1):165-180
pubmed: 30693529
Biochem J. 2005 May 15;388(Pt 1):159-68
pubmed: 15638811
J Biol Chem. 2011 Jun 17;286(24):21427-39
pubmed: 21515685
Life Sci Alliance. 2019 Sep 30;2(5):
pubmed: 31570514
Methods Mol Biol. 2014;1062:487-507
pubmed: 24057383
Nat Methods. 2009 May;6(5):343-5
pubmed: 19363495
Plant Physiol. 2020 Jan;182(1):424-435
pubmed: 31636102
Annu Rev Plant Biol. 2013;64:609-35
pubmed: 23451783
Nat Commun. 2014 Nov 13;5:5439
pubmed: 25451040
Plant Physiol. 2012 Dec;160(4):2202-18
pubmed: 23027666
Plant Physiol. 2004 Dec;136(4):4265-74
pubmed: 15563617