An oscillatory mechanism for multi-level storage in short-term memory.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
10 08 2023
Historique:
received: 01 04 2022
accepted: 01 08 2023
medline: 14 8 2023
pubmed: 11 8 2023
entrez: 10 8 2023
Statut: epublish

Résumé

Oscillatory activity is commonly observed during the maintenance of information in short-term memory, but its role remains unclear. Non-oscillatory models of short-term memory storage are able to encode stimulus identity through their spatial patterns of activity, but are typically limited to either an all-or-none representation of stimulus amplitude or exhibit a biologically implausible exact-tuning condition. Here we demonstrate a simple mechanism by which oscillatory input enables a circuit to generate persistent or sequential activity that encodes information not only in the spatial pattern of activity, but also in the amplitude of activity. This is accomplished through a phase-locking phenomenon that permits many different amplitudes of persistent activity to be stored without requiring exact tuning of model parameters. Altogether, this work proposes a class of models for the storage of information in working memory, a potential role for brain oscillations, and a dynamical mechanism for maintaining multi-stable neural representations.

Identifiants

pubmed: 37563448
doi: 10.1038/s42003-023-05200-7
pii: 10.1038/s42003-023-05200-7
pmc: PMC10415352
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

829

Subventions

Organisme : NEI NIH HHS
ID : R01 EY027036
Pays : United States
Organisme : NINDS NIH HHS
ID : U19 NS104648
Pays : United States

Informations de copyright

© 2023. Springer Nature Limited.

Références

Curr Biol. 2020 May 4;30(9):1748-1754.e4
pubmed: 32275881
Science. 2008 Sep 5;321(5894):1322-7
pubmed: 18772431
Curr Opin Neurobiol. 2014 Apr;25:20-4
pubmed: 24709596
J Comput Neurosci. 2000 Sep-Oct;9(2):171-85
pubmed: 11030520
Elife. 2015 Apr 14;4:
pubmed: 25869470
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12828-33
pubmed: 23858465
Front Hum Neurosci. 2010 Nov 02;4:187
pubmed: 21103019
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3779-84
pubmed: 21321198
J Neurosci. 2012 Mar 7;32(10):3287-95
pubmed: 22399750
Cereb Cortex. 2016 Sep;26(9):3772-84
pubmed: 26286916
J Neurosci. 1996 Oct 15;16(20):6402-13
pubmed: 8815919
Neuron. 2013 Mar 20;77(6):1002-16
pubmed: 23522038
Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13339-44
pubmed: 8917592
Front Syst Neurosci. 2013 Aug 30;7:43
pubmed: 24009562
Nat Rev Neurosci. 2001 Oct;2(10):704-16
pubmed: 11584308
Physiol Rev. 2010 Jul;90(3):1195-268
pubmed: 20664082
Trends Neurosci. 2001 Aug;24(8):455-63
pubmed: 11476885
Trends Cogn Sci. 2014 Jan;18(1):16-25
pubmed: 24268290
Cereb Cortex. 2003 Nov;13(11):1185-95
pubmed: 14576210
Nature. 2012 Mar 14;484(7392):62-8
pubmed: 22419153
J Neurophysiol. 2008 May;99(5):2584-601
pubmed: 18337370
J Neurosci. 1999 Nov 1;19(21):9587-603
pubmed: 10531461
Nat Neurosci. 2002 Aug;5(8):775-82
pubmed: 12134153
Nat Neurosci. 2016 Mar;19(3):394-403
pubmed: 26906506
Curr Opin Neurobiol. 2004 Dec;14(6):675-84
pubmed: 15582368
Nat Neurosci. 2017 Jul;20(7):1014-1022
pubmed: 28530664
J Neurosci. 2014 May 14;34(20):6790-806
pubmed: 24828633
Science. 1995 Mar 10;267(5203):1512-5
pubmed: 7878473
Biol Cybern. 2021 Oct;115(5):451-471
pubmed: 34417880
Neuron. 2018 Oct 24;100(2):463-475
pubmed: 30359609
J Comput Neurosci. 2014 Aug;37(1):29-48
pubmed: 24271061
PLoS Comput Biol. 2018 Nov 12;14(11):e1006517
pubmed: 30419015
Cereb Cortex. 2000 Sep;10(9):910-23
pubmed: 10982751
Neural Comput. 2003 Aug;15(8):1809-41
pubmed: 14511514
Neuron. 2016 Apr 6;90(1):152-164
pubmed: 26996084
Curr Opin Neurobiol. 2003 Apr;13(2):204-11
pubmed: 12744975
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):18023-8
pubmed: 19004759
Annu Rev Neurosci. 2017 Jul 25;40:603-627
pubmed: 28772102
Neuron. 2011 Aug 25;71(4):737-49
pubmed: 21867888
J Neurosci. 2011 Mar 30;31(13):4935-43
pubmed: 21451032
Elife. 2016 Jul 07;5:
pubmed: 27383272
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13144-9
pubmed: 23878251
Neurobiol Learn Mem. 2020 Sep;173:107228
pubmed: 32561459
Neuroimage. 2014 Jan 15;85 Pt 2:656-66
pubmed: 23774394
Annu Rev Psychol. 2008;59:193-224
pubmed: 17854286

Auteurs

Kathleen P Champion (KP)

Department of Applied Mathematics, University of Washington, Seattle, WA, 98195, USA.

Olivia Gozel (O)

Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, 60637, USA.
Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA.

Benjamin S Lankow (BS)

Center for Neuroscience, University of California, Davis, Davis, CA, 95618, USA.

G Bard Ermentrout (GB)

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15213, USA. bard@pitt.edu.

Mark S Goldman (MS)

Center for Neuroscience, University of California, Davis, Davis, CA, 95618, USA. msgoldman@ucdavis.edu.
Department of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA, 95618, USA. msgoldman@ucdavis.edu.

Articles similaires

1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
alpha-Synuclein Humans Animals Mice Lewy Body Disease
1.00
Animals Mice Immunity, Innate Interneurons Synapses
Humans Molecular Chaperones Brain Protein Folding Mutation

Classifications MeSH