Engineering of brick and staple components for ordered assembly of synthetic repeat proteins.

Nanomaterial Protein Origami Protein design Self-assembly Tandem repeat protein

Journal

Journal of structural biology
ISSN: 1095-8657
Titre abrégé: J Struct Biol
Pays: United States
ID NLM: 9011206

Informations de publication

Date de publication:
09 2023
Historique:
received: 26 04 2023
revised: 27 07 2023
accepted: 07 08 2023
medline: 12 9 2023
pubmed: 12 8 2023
entrez: 11 8 2023
Statut: ppublish

Résumé

Synthetic ɑRep repeat proteins are engineered as Brick and Staple protein pairs that together self-assemble into helical filaments. In most cases, the filaments spontaneously form supercrystals. Here, we describe an expanded series of ɑRep Bricks designed to stabilize the interaction between consecutive Bricks, to control the length of the assembled multimers, or to alter the spatial distribution of the Staple on the filaments. The effects of these Brick modifications on the assembly, on the final filament structure and on the crystal symmetry are analyzed by biochemical methods, electron microscopy and small angle X-ray scattering. We further extend the concept of Brick/Staple protein origami by designing a new type of "Janus"-like Brick protein that is equally assembled by orthogonal staples binding its inner or outer surfaces and thus ending inside or outside the filaments. The relative roles of longitudinal and lateral associations in the assembly process are discussed. This set of results demonstrates important proofs-of-principle for engineering these remarkably versatile proteins toward nanometer-to-micron scale constructions.

Identifiants

pubmed: 37567372
pii: S1047-8477(23)00075-8
doi: 10.1016/j.jsb.2023.108012
pii:
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

108012

Informations de copyright

Copyright © 2023. Published by Elsevier Inc.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Jessalyn Miller (J)

Emory University Department of Chemistry, 1515 Dickey Drive, Atlanta, GA 30322, USA(1); Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.

Agathe Urvoas (A)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.

Benoit Gigant (B)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.

Malika Ouldali (M)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.

Ana Arteni (A)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.

Agnes Mesneau (A)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.

Marie Valerio-Lepiniec (M)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.

Franck Artzner (F)

Institut de Physique de Rennes (IPR), CNRS, UMR 6251, Université de Rennes 1, F-35042 Rennes, France.

Erik Dujardin (E)

Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne Franche-Comté, 21000 Dijon, France. Electronic address: erik.dujardin@cnrs.fr.

Philippe Minard (P)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France. Electronic address: philippe.minard@i2bc.paris-saclay.fr.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Animals Adherens Junctions Intercellular Junctions Tight Junctions
Humans Computational Biology ROC Curve Algorithms Proteins

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Classifications MeSH