MATH: A Deep Learning Approach in QSAR for Estrogen Receptor Alpha Inhibitors.
QSAR
Transformer
artificial intelligence
breast cancer
estrogen receptor alpha
molecular graph structure
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
03 Aug 2023
03 Aug 2023
Historique:
received:
31
05
2023
revised:
24
07
2023
accepted:
24
07
2023
medline:
14
8
2023
pubmed:
12
8
2023
entrez:
12
8
2023
Statut:
epublish
Résumé
Breast cancer ranks as the second leading cause of death among women, but early screening and self-awareness can help prevent it. Hormone therapy drugs that target estrogen levels offer potential treatments. However, conventional drug discovery entails extensive, costly processes. This study presents a framework for analyzing the quantitative structure-activity relationship (QSAR) of estrogen receptor alpha inhibitors. Our approach utilizes supervised learning, integrating self-attention Transformer and molecular graph information, to predict estrogen receptor alpha inhibitors. We established five classification models for predicting these inhibitors in breast cancer. Among these models, our proposed MATH model achieved remarkable precision, recall, F1 score, and specificity, with values of 0.952, 0.972, 0.960, and 0.922, respectively, alongside an ROC AUC of 0.977. MATH exhibited robust performance, suggesting its potential to assist pharmaceutical and health researchers in identifying candidate compounds for estrogen alpha inhibitors and guiding drug discovery pathways.
Identifiants
pubmed: 37570812
pii: molecules28155843
doi: 10.3390/molecules28155843
pmc: PMC10421274
pii:
doi:
Substances chimiques
Estrogen Receptor alpha
0
Estrogen Antagonists
0
Estrogens
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Molecules. 2023 Mar 06;28(5):
pubmed: 36903654
Sci Rep. 2020 Oct 8;10(1):16771
pubmed: 33033310
Front Environ Sci. 2016 Mar;4:
pubmed: 27642585
World J Biol Chem. 2015 Aug 26;6(3):231-9
pubmed: 26322178
Chem Sci. 2017 Oct 31;9(2):513-530
pubmed: 29629118
Dev Biol. 2005 May 15;281(2):256-69
pubmed: 15893977
Cardiol Res. 2020 Oct;11(5):305-310
pubmed: 32849965
Endocrinology. 1997 Sep;138(9):4022-5
pubmed: 9275094
J Assist Reprod Genet. 2019 Sep;36(9):1901-1908
pubmed: 31352621
J Chem Inf Model. 2010 May 24;50(5):742-54
pubmed: 20426451
Front Artif Intell. 2019 Sep 06;2:17
pubmed: 33733106
Comput Biol Med. 2018 Sep 1;100:253-258
pubmed: 28941550
Molecules. 2023 Feb 09;28(4):
pubmed: 36838665
Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954
pubmed: 27899562
J Med Chem. 2010 Mar 25;53(6):2601-11
pubmed: 20175530
J Med Chem. 2014 Jun 26;57(12):4977-5010
pubmed: 24351051
RSC Adv. 2018 Mar 27;8(21):11344-11356
pubmed: 35542807
Toxicol Appl Pharmacol. 2019 Sep 1;378:114630
pubmed: 31220507
Lab Invest. 2021 Apr;101(4):490-502
pubmed: 32778734
ACS Cent Sci. 2018 Nov 28;4(11):1520-1530
pubmed: 30555904