Empirical testing of cryoconite granulation: Role of cyanobacteria in the formation of key biogenic structure darkening glaciers in polar regions.
Microcoleus
Phormidesmis
Alcian blue staining
Oscillatoriales
biogenic aggregations
cryoconite granules
extracellular polymeric substances
glacial ecosystems
glacier cyanobacteria
scanning electron microscopy
Journal
Journal of phycology
ISSN: 1529-8817
Titre abrégé: J Phycol
Pays: United States
ID NLM: 9882935
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
revised:
18
06
2023
received:
03
03
2023
accepted:
03
07
2023
medline:
23
10
2023
pubmed:
13
8
2023
entrez:
12
8
2023
Statut:
ppublish
Résumé
Cryoconite, the dark sediment on the surface of glaciers, often aggregates into oval or irregular granules serving as biogeochemical factories. They reduce a glacier's albedo, act as biodiversity hotspots by supporting aerobic and anaerobic microbial communities, constitute one of the organic matter (OM) sources on glaciers, and are a feeder for micrometazoans. Although cryoconite granules have multiple roles on glaciers, their formation is poorly understood. Cyanobacteria are ubiquitous and abundant engineers of cryoconite hole ecosystems. This study tested whether cyanobacteria may be responsible for cryoconite granulation as a sole biotic element. Incubation of Greenlandic, Svalbard, and Scandinavian cyanobacteria in different nutrient availabilities and substrata for growth (distilled water alone and water with quartz powder, furnaced cryoconite without OM, or powdered rocks from glacial catchment) revealed that cyanobacteria bind mineral particles into granules. The structures formed in the experiment resembled those commonly observed in natural cryoconite holes: they contained numerous cyanobacterial filaments protruding from aggregated mineral particles. Moreover, all examined strains were confirmed to produce extracellular polymeric substances (EPS), which suggests that cryoconite granulation is most likely due to EPS secretion by gliding cyanobacteria. In the presence of water as the only substrate for growth, cyanobacteria formed mostly carpet-like mats. Our data empirically prove that EPS-producing oscillatorialean cyanobacteria isolated from the diverse community of cryoconite microorganisms can form granules from mineral substrate and that the presence of the mineral substrate increases the probability of the formation of these important and complex biogeochemical microstructures on glaciers.
Substances chimiques
Minerals
0
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
939-949Informations de copyright
© 2023 Phycological Society of America.
Références
Andersen, R. A., & Kawachi, M. (2005). Traditional microalgae isolation techniques. In R. A. Andersen (Ed.), Algal culturing techniques (1st ed., pp. 83-101). Elsevier Academic.
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9, 378-400.
Chrismas, N. A. M., Anesio, A. M., & Sánchez-Baracaldo, P. (2015). Multiple adaptations to polar and alpine environments within cyanobacteria: A phylogenomic and Bayesian approach. Frontiers in Microbiology, 6, 1070. https://doi.org/10.3389/fmicb.2015.01070
Chrismas, N. A. M., Barker, G., Anesio, A. M., & Sánchez-Baracaldo, P. (2016). Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics, 17, 533. https://doi.org/10.1186/s12864-016-2846-4
Cook, J., Edwards, A., Takeuchi, N., & Irvine-Fynn, T. (2016). Cryoconite: The dark biological secret of the cryosphere. Progress in Physical Geography, 40, 66-111. https://doi.org/10.1177/0309133315616574
Guillard, R. R. L., & Lorenzen, C. J. (1972). Yellow-green algae with chlorophyllide c. Journal of Phycology, 8, 10-14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x
Ferris, M. J., & Hirsch, S. F. (1991). Method for isolation and purification of cyanobacteria. Applied and Environmental Microbiology Journal, 57, 1448-1452. https://doi.org/10.1128/AEM.57.5.1448-1452.1991
Fountain, A. G., Tranter, M., Nylen, T. H., Lewis, K. J., & Mueller, D. R. (2004). Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo dry valleys, Antarctica. Journal of Glaciology, 50, 35-45. https://doi.org/10.3189/172756504781830312
Frey, B., Rieder, S. R., Brunner, I., Plötze, M., Koetzsch, S., Lapanje, A., Brandl, H., & Furrer, G. (2010). Weathering-associated bacteria from the Damma glacier forefield: Physiological capabilities and impact on granite dissolution. Applied and Environmental Microbiology Journal, 76, 4788-4796. https://doi.org/10.1128/AEM.00657-10
Kohshima, S., Seko, K., & Yoshimura, Y. (1993). Biotic acceleration of glacier melting in Yala glacier 9 Langtang region, Nepal Himalaya. In Snow and glacier hydrology, proceedings of Kathmandu symposium (pp. 309-316). IAHS Publication.
Komárek, J., & Anagnostidis, K. (2005). Cyanoprocaryota. 2. Teil: Oscillatoriales. In B. Büdel, L. Krienitz, G. Gärtner, & M. Schagerl (Eds.), Cyanoprocaryota: Vol. 2. Part 2. Oscillatoriales. Springer Spektrum.
Komárek, J., Kaštovský, J., Ventura, S., Turicchia, S., & Šmarda, J. (2009). The cyanobacterial genus Phormidesmis. Algological Studies, 129, 41-59. https://doi.org/10.1127/1864-1318/2009/0129-0041
Langford, H. (2012). The microstructure, biogeochemistry and aggregation of Arctic cryoconite granules. [Doctoral dissertation, University of Sheffield].
Langford, H., Hodson, A., Banwart, S., & Bøggild, C. (2010). The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology, 51, 87-94. https://doi.org/10.3189/172756411795932083
Langford, H. J., Irvine-Fynn, T. D. L., Edwards, A., Banwart, S. A., & Hodson, A. J. (2014). A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard. Biogeosciences, 11, 5365-5380. https://doi.org/10.5194/bg-11-5365-2014
Leidman, S. Z., Rennermalm, Å. K., Muthyala, R., Guo, Q., & Overeem, I. (2020). The presence and widespread distribution of dark sediment in Greenland ice sheet supraglacial streams implies substantial impact of microbial communities on sediment deposition and albedo. Geophysical Research Letters, 48, 2020GL088444. https://doi.org/10.1029/2020GL088444
Li, Y., Kang, S., Yan, F., Chen, J., Wang, K., Paudyal, R., Liu, J., Qin, X., & Sillanpää, M. (2019). Cryoconite on a glacier on the north-eastern Tibetan plateau: Light-absorbing impurities, albedo and enhanced melting. Journal of Glaciology, 65, 633-644. https://doi.org/10.1017/jog.2019.41
Liu, L., Huang, Q., & Qin, B. (2018). Characteristics and roles of Microcystis extracellular polymeric substances (EPS) in cyanobacterial blooms: A short review. Journal of Freshwater Ecology, 33, 183-193. https://doi.org/10.1080/02705060.2017.1391722
Mugnai, G., Rossi, F., Felde, V. J. M. N. L., Colesie, C., Büdel, B., Peth, S., Kaplan, A., & Philippis, R. D. (2018). The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biology and Biochemistry, 127, 318-328. https://doi.org/10.1016/j.soilbio.2018.08.007
Musilova, M., Tranter, M., Bamber, J. L., Takeuchi, N., & Anesio, A. M. (2016). Experimental evidence that microbial activity lowers the albedo of glaciers. Geochemical Perspectives Letters, 2, 106-116. https://doi.org/10.7185/geochemlet.1611
Nagar, S., Antony, R., & Thamban, M. (2021). Extracellular polymeric substances in Antarctic environments: A review of their ecological roles and impact on glacier biogeochemical cycles. Polar Science, 30, 100686. https://doi.org/10.1016/j.polar.2021.100686
Nagatsuka, N., Takeuchi, N., Uetake, J., Shimada, R., Onuma, Y., Tanaka, S., & Nakano, T. (2016). Variations in Sr and Nd isotopic ratios of mineral particles in cryoconite in Western Greenland. Frontiers in Earth Science, 4, 93. https://doi.org/10.3389/feart.2016.00093
Pajdak-Stós, A., Fiałkowska, E., & Fyda, J. (2001). Phormidium autumnale (cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology, 23, 237-244. https://doi.org/10.3354/ame023237
Park, C., & Takeuchi, N. (2021). Unmasking photogranulation in decreasing glacial albedo and net autotrophic wastewater treatment. Environmental Microbiology, 23, 6391-6404. https://doi.org/10.1111/1462-2920.15780
Perez, R., Wörmer, L., Sass, P., & Maldener, I. (2018). A highly asynchronous developmental program triggered during germination of dormant akinetes of filamentous diazotrophic cyanobacteria. FEMS Microbiology Ecology, 94, fix131. https://doi.org/10.1093/femsec/fix131
Perini, L., Gostinčar, C., Likar, M., Frisvad, J. C., Kostanjšek, R., Nicholes, M., Williamson, C., Anesio, A. M., Zalar, P., & Gunde-Cimerman, N. (2022). Interactions of fungi and algae from the Greenland ice sheet. Microbial Ecology, 86, 282-296. https://doi.org/10.1007/s00248-022-02033-5
Poniecka, E. A., Bagshaw, E. A., Sass, H., Segar, A., Webster, G., Williamson, C., Anesio, A. M., & Tranter, M. (2020). Physiological capabilities of cryoconite hole microorganisms. Frontiers in Microbiology, 11, 1783. https://doi.org/10.3389/fmicb.2020.01783
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Román, J. R., Roncero-Ramos, B., Rodríguez-Caballero, E., Chamizo, S., & Cantón, Y. (2021). Effect of water availability on induced cyanobacterial biocrust development. Catena, 197, 104988. https://doi.org/10.1016/j.catena.2020.104988
Rossi, F., Mugnai, G., & De Philippis, R. (2018). Complex role of the polymeric matrix in biological soil crusts. Plant and Soil, 429, 19-34. https://doi.org/10.1007/s11104-017-3441-4
Rozwalak, P., Podkowa, P., Buda, J., Niedzielski, P., Kawecki, S., Ambrosini, R., Azzoni, R. S., Baccolo, G., Ceballos, J. L., Cook, J., di Mauro, B., Ficetola, G. F., Franzetti, A., Ignatiuk, D., Klimaszyk, P., Łokas, E., Ono, M., Parnikoza, I., Pietryka, M., … Zawierucha, K. (2022). Cryoconite-From minerals and organic matter to bioengineered sediments on glacier's surfaces. Science of the Total Environment, 807, 150874. https://doi.org/10.1016/j.scitotenv.2021.150874
Segawa, T., Takeuchi, N., Mori, H., Rathnayake, M. L. D., Li, Z., Akiyoshi, A., Satoh, H., & Ishii, S. (2020). Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers. FEMS Microbiology Ecology, 96, fiaa199. https://doi.org/10.1093/femsec/fiaa199
Sohm, J. A., Edwards, B. R., Wilson, B. G., & Webb, E. A. (2011). Constitutive extracellular polysaccharide (EPS) production by specific isolates of Crocosphaera watsonii. Frontiers in Microbiology, 2, 229. https://doi.org/10.3389/fmicb.2011.00229
Stanojković, A., Skoupý, S., Hašler, P., Poulíčková, A., & Dvořák, P. (2022). Geography and climate drive the distribution and diversification of the cosmopolitan cyanobacterium microcoleus (Oscillatoriales, cyanobacteria). European Journal of Phycology, 57(4), 396-405. https://doi.org/10.1080/09670262.2021.2007420
Strunecký, O., Elster, J., & Komárek, J. (2010). Phylogenetic relationships between geographically separate Phormidium cyanobacteria: Is there a link between north and south polar regions? Polar Biology, 33, 1419-1428. https://doi.org/10.1007/s00300-010-0834-8
Strunecký, O., Elster, J., & Komárek, J. (2011). Taxonomic revision of the freshwater cyanobacterium “Phormidium” murrayi = Wilmottia murrayi. Fottea, 11, 57-71. https://doi.org/10.5507/fot.2011.007
Strunecký, O., Komárek, J., Johansen, J., Lukešová, A., & Elster, J. (2013). Molecular and morphological criteria for revision of the genus microcoleus (Oscillatoriales, cyanobacteria). Journal of Phycology, 49, 1167-1180. https://doi.org/10.1111/jpy.12128
Takeuchi, N., Kohshima, S., & Seko, K. (2001). Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research, 33, 115-122. https://doi.org/10.1080/15230430.2001.12003413
Takeuchi, N., Nishiyama, H., & Li, Z. (2010). Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology, 51(56), 9-14. https://doi.org/10.3189/172756411795932010
Teneva, I., Belkinova, D., Paunova-Krasteva, T., Bardarov, K., Moten, D., Mladenov, R., & Dzhambazov, B. (2023). Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal, 11, e100525. https://doi.org/10.3897/BDJ.11.e100525
Uetake, J., Tanaka, S., Segawa, T., Takeuchi, N., Nagatsuka, N., Motoyama, H., & Aoki, T. (2016). Microbial community variation in cryoconite granules on Qaanaaq glacier, NW Greenland. FEMS Microbiology Ecology, 92, fiw127. https://doi.org/10.1093/femsec/fiw127
Vicente-García, V., Ríos-Leal, E., Calderón-Domínguez, G., Cañizares-Villanueva, R. O., & Olvera-Ramírez, R. (2004). Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium 94a isolated from an arid zone of Mexico. Biotechnology and Bioengineering, 85, 306-310. https://doi.org/10.1002/bit.10912
Wingender, J., Neu, T. R., & Flemming, H. C. (1999). What are bacterial extracellular polymeric substances? In D. J. Wingender, D. T. R. Neu, & P. D. H. C. Flemming (Eds.), Microbial extracellular polymeric substances (pp. 1-19). Springer.
Žárský, J., Stibal, M., Hodson, A., Sattler, B., Schostag, M., Hansen, L., Jacobsen, C., & Psenner, R. (2013). Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea. Environmental Research Letters, 8, 35044. https://doi.org/10.1088/1748-9326/8/3/035044
Zawierucha, K., Baccolo, G., Di Mauro, B., Nawrot, A., Szczuciński, W., & Kalińska, E. (2019). Micromorphological features of mineral matter from cryoconite holes on Arctic (Svalbard) and alpine (the Alps, the Caucasus) glaciers. Polar Science, 22, 100482. https://doi.org/10.1016/j.polar.2019.100482
Zawierucha, K., Buda, J., Pietryka, M., Richter, D., Łokas, E., Lehmann-Konera, S., Makowska, N., & Bogdziewicz, M. (2018). Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-West Greenland ice sheet. Limnology, 19, 141-150. https://doi.org/10.1007/s10201-017-0528-9