Characterization of K562 cells: uncovering novel chromosomes, assessing transferrin receptor expression, and probing pharmacological therapies.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
14 Aug 2023
Historique:
received: 09 07 2023
accepted: 31 07 2023
revised: 30 07 2023
medline: 15 8 2023
pubmed: 14 8 2023
entrez: 14 8 2023
Statut: epublish

Résumé

Human erythroleukemic K562 cells represent the prototypical cell culture model of chronic myeloid leukemia (CML). The cells are pseudo-triploid and positive for the Philadelphia chromosome. Therefore, K562 cells have been widely used for investigating the BCR/ABL1 oncogene and the tyrosine kinase inhibitor, imatinib-mesylate. Further, K562 cells overexpress transferrin receptors (TfR) and have been used as a model for targeting cytotoxic therapies, via receptor-mediated endocytosis. Here, we have characterized K562 cells focusing on the karyotype of cells in prolonged culture, regulation of expression of TfR in wildtype (WT) and doxorubicin-resistant cells, and responses to histone deacetylase inhibition (HDACi). Karyotype analysis indicates novel chromosomes and gene expression analysis suggests a shift of cultured K562 cells away from patient-derived leukemic cells. We confirm the high expression of TfR on K562 cells using immunofluorescence and cell-surface receptor binding radioassays. Importantly, high TfR expression is observed in patient-derived cells, and we highlight the persistent expression of TfR following doxorubicin acquired resistance. Epigenetic analysis indicates that permissive histone acetylation and methylation at the promoter region regulates the transcription of TfR in K562 cells. Finally, we show relatively high expression of HDAC enzymes in K562 cells and demonstrate the chemotoxic effects of HDACi, using the FDA-approved hydroxamic acid, vorinostat. Together with a description of morphology, infrared spectral analysis, and examination of metabolic properties, we provide a comprehensive characterization of K562 cells. Overall, K562 cell culture systems remain widely used for the investigation of novel therapeutics for CML, which is particularly important in cases of imatinib-mesylate resistance.

Identifiants

pubmed: 37578596
doi: 10.1007/s00018-023-04905-6
pii: 10.1007/s00018-023-04905-6
doi:

Substances chimiques

Imatinib Mesylate 8A1O1M485B
Fusion Proteins, bcr-abl EC 2.7.10.2
Transferrin 0
Pyrimidines 0
Histone Deacetylases EC 3.5.1.98
Doxorubicin 80168379AG
Receptors, Transferrin 0
Mesylates 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

248

Informations de copyright

© 2023. Crown.

Références

Nowell PC (1960) A minute chromosome in human granulocytic leukemia. Science 132:1497–1501
Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45(3):321–334
pubmed: 163658
Lee SM, Bae JH, Kim MJ et al (2007) Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther 322(3):1084–1092
pubmed: 17569822
Zhang B, Strauss AC, Chu S et al (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17(5):427–442
pubmed: 20478526 pmcid: 2873971
Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566
pubmed: 8616716
Bixby D, Talpaz M (2011) Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia 25(1):7–22
pubmed: 21102425
Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7(5):345–356
pubmed: 17457302
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234
pubmed: 16518375
Lozzio CB, Lozzio BB, Machado EA, Fuhr JE, Lair SV, Bamberger EG (1979) Effects of sodium butyrate on human chronic myelogenous leukaemia cell line K562. Nature 281:709–710
pubmed: 298333
Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl–positive human acute leukemia cells. Blood 101(8):3236–3239
pubmed: 12446442
Klausner RD, Ashwell G, Van Renswoude J, Harford JB, Bridges KR (1983) Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci 80(8):2263–2266
pubmed: 6300904 pmcid: 393799
Van Renswoude J, Bridges KR, Harford JB, Klausner RD (1982) Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci 79(20):6186–6190
pubmed: 6292894 pmcid: 347084
Karagiannis TC, Lobachevsky PN, Leung BK, White JM, Martin RF (2006) Receptor-mediated DNA-targeted photoimmunotherapy. Can Res 66(21):10548–10552
Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. https://doi.org/10.1038/nature08956
doi: 10.1038/nature08956 pubmed: 20305636 pmcid: 2855406
Absher M (1973) Hemocytometer counting. Tissue culture: methods and applications. Academic Press, New York, pp 395–397
Rafehi H, Smith AJ, Balcerczyk A et al (2012) Investigation into the biological properties of the olive polyphenol, hydroxytyrosol: mechanistic insights by genome-wide mRNA-Seq analysis. Genes Nutr 7(2):343–355
pubmed: 21953375
Tang A, Team AP (2014) Functional genomics data and expression look-up tools: array express and expression atlas
Lukk M, Kapushesky M, Nikkilä J et al (2010) A global map of human gene expression. Nat Biotechnol 28(4):322–324
pubmed: 20379172 pmcid: 2974261
Wu M, Neilson A, Swift AL et al (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292(1):C125–C136
pubmed: 16971499
Mah L-J, Vasireddy RS, Tang MM, Georgiadis GT, El-Osta A, Karagiannis TC (2010) Quantification of γH2AX Foci in Response to Ionising Radiation. J Visualiz Exp. https://doi.org/10.3791/1957
doi: 10.3791/1957
Ververis K, Rodd AL, Tang MM, El-Osta A, Karagiannis TC (2011) Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes. Cell Mol Life Sci 68(24):4101–4114. https://doi.org/10.1007/s00018-011-0727-1
doi: 10.1007/s00018-011-0727-1 pubmed: 21584806
Andersson LC, Nilsson K, Gahmberg CG (1979) K562—a human erythroleukemic cell line. Int J Cancer 23(2):143–147
pubmed: 367973
Sutherland JA, Turner AR, Mannoni P, McGann LE, Turc JM (1986) Differentiation of K562 leukemia cells along erythroid, macrophage, and megakaryocyte lineages. J Biol Response Mod 5(3):250–262
pubmed: 2425057
Baliga BS, Mankad M, Shah AK, Mankad VN (1993) Mechanism of differentiation of human erythroleukaemic cell line K562 by hemin. Cell Prolif 26(6):519–529
pubmed: 9116119
Malek K, Wood BR, Bambery KR (2014) FTIR imaging of tissues: techniques and methods of analysis. Optical spectroscopy and computational methods in biology and medicine. Springer, pp 419–473
Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179
Bellisola G, Della Peruta M, Vezzalini M et al (2010) Tracking infrared signatures of drugs in cancer cells by Fourier transform microspectroscopy. Analyst 135(12):3077–3086
pubmed: 20931110
Chen TR (1985) Modal karyotype of human leukemia cell line, K562 (ATCC CCL 243). Cancer Genet Cytogenet 17(1):55–60
pubmed: 3857109
Gribble SM, Roberts I, Grace C, Andrews KM, Green AR, Nacheva EP (2000) Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization. Cancer Genet Cytogenet 118(1):1–8
pubmed: 10731582
Naumann S, Reutzel D, Speicher M, Decker HJ (2001) Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res 25(4):313–322
pubmed: 11248328
Andersson LC, Jokinen M, Gahmberg CG, Klein E, Klein G, Nilsson K (1979) Presence of erythrocytic components in the K562 cell line. Int J Cancer 24(4):514
pubmed: 528075
Cudkowicz A, Klausner R, Bridges K (1983) Regulation of the transferrin receptor in K562 erythroleukemia cells. Prog Clin Biol Res 165:509–519
Leibowitz D, Cubbon R, Bank A (1985) Increased expression of a novel c-abl-related RNA in K562 cells. Blood 65(3):526–529
pubmed: 2578837
Maziarz RT, Burakoff SJ, Faller DV (1990) The regulation of exogenous and endogenous class I MHC genes in a human tumor cell line, K562. Mol Immunol 27(2):135–142
pubmed: 2108324
Charnay P, Maniatis T (1983) Transcriptional regulation of globin gene expression in the human erythroid cell line K562. Science 220(4603):1281–1283
pubmed: 6574602
Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550
pubmed: 16199517 pmcid: 1239896
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic acids Res 40:gkr988
Consortium GO (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(suppl 1):D258–D261
del Senno L, Barbieri R, Amelotti F et al (1985) Methylation and expression of c-myc and c-abl oncogenes in human leukemic K562 cells before and after treatment with 5-azacytidine. Cancer Detect Prev 9(1–2):9–15
Tortorella SM, Hung A, Karagiannis TC (2015) The implication of cancer progenitor cells and the role of epigenetics in the development of novel therapeutic strategies for chronic myeloid leukemia. Antioxid Redox Signal 22(16):1425–1462
pubmed: 25366930
Hamilton TA, Wada HG, Sussman HH (1979) Identification of transferrin receptors on the surface of human cultured cells. Proc Natl Acad Sci 76(12):6406–6410
pubmed: 230508 pmcid: 411873
Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51(4):660–672
Fatemiyan N, Davie JR (2023) Broad histone H4 monomethylation marks expressed genes involved in translation. Genome. https://doi.org/10.1139/gen-2023-0011
doi: 10.1139/gen-2023-0011 pubmed: 37156012
Sharma P, Sattarifard H, Fatemiyan N, Lakowski TM, Davie JR (2022) Bioinformatic analyses of Broad H3K79me2 domains in different Leukemia cell line data sets. Cells. https://doi.org/10.3390/cells11182830
doi: 10.3390/cells11182830 pubmed: 36611917 pmcid: 9688085
Gewirtz D (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741
pubmed: 10075079
Praet M, Stryckmans P, Ruysschaert J-M (1996) Cellular uptake, cytotoxicity, and transport kinetics of anthracyclines in human sensitive and multidrug-resistant K562 cells. Biochem Pharmacol 51(10):1341–1348
pubmed: 8787550
Benedetti E, Bramanti E, Papineschi F, Rossi I, Benedetti E (1997) Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy. Appl Spectrosc 51(6):792–797
Tsuruo T, Iida H, Nojiri M, Tsukagoshi S, Sakurai Y (1983) Circumvention of vincristine and adriamycin resistance in vitro and in vivo by calcium influx blockers. Can Res 43(6):2905–2910
Chen B, Sun Q, Wang X et al (2008) Reversal in multidrug resistance by magnetic nanoparticle of Fe
Diaz-Blanco E, Bruns I, Neumann F et al (2007) Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21(3):494–504. https://doi.org/10.1038/sj.leu.2404549
doi: 10.1038/sj.leu.2404549 pubmed: 17252012
Clarke CJ, Holyoake TL (2017) Preclinical approaches in chronic myeloid leukemia: from cells to systems. Exp Hematol 47:13–23. https://doi.org/10.1016/j.exphem.2016.11.005
doi: 10.1016/j.exphem.2016.11.005 pubmed: 28017647 pmcid: 5333535
West AP, Bennett MJ, Sellers VM, Andrews NC, Enns CA, Bjorkman PJ (2000) Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE. J Biol Chem 275(49):38135–38138
pubmed: 11027676
Mayle KM, Le AM, Kamei DT (2012) The intracellular trafficking pathway of transferrin. Biochimica et Biophysica Acta (BBA)-General Subjects 1820(3):264–281
pubmed: 21968002
Luck AN, Mason AB (2011) Transferrin-mediated cellular iron delivery. Curr Top Membr 69:3–35
Steere AN, Byrne SL, Chasteen ND, Mason AB (2012) Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochimica et Biophysica Acta (BBA)-General Subjects 1820(3):326–333
pubmed: 21699959
Gatter KC, Brown G, Trowbridge I, Woolston R, Mason D (1983) Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 36(5):539–545
pubmed: 6302135 pmcid: 498283
Poudel G, Tolland MG, Hughes TP, Pagani IS (2022) Mechanisms of resistance and implications for treatment strategies in chronic myeloid Leukaemia. Cancers (Basel). https://doi.org/10.3390/cancers14143300
doi: 10.3390/cancers14143300 pubmed: 36230780
Wang HW, Ma KL, Liu H, Zhou JY (2020) Reversal of multidrug resistance in leukemia cells using a transferrin-modified nanomicelle encapsulating both doxorubicin and psoralen. Aging (Albany NY) 12(7):6018–6029. https://doi.org/10.18632/aging.102992
doi: 10.18632/aging.102992 pubmed: 32259795
Ding W, Guo L (2013) Immobilized transferrin Fe
doi: 10.2147/ijn.S51745
Pan YL, Zeng SX, Hao RR, Liang MH, Shen ZR, Huang WH (2022) The progress of small-molecules and degraders against BCR-ABL for the treatment of CML. Eur J Med Chem 238:114442. https://doi.org/10.1016/j.ejmech.2022.114442
doi: 10.1016/j.ejmech.2022.114442 pubmed: 35551036
Jabbour E, Parikh SA, Kantarjian H, Cortes J (2011) Chronic myeloid leukemia: mechanisms of resistance and treatment. Hematol Oncol Clin North Am 25(5):981–995. https://doi.org/10.1016/j.hoc.2011.09.004 . (v)
doi: 10.1016/j.hoc.2011.09.004 pubmed: 22054730 pmcid: 4428141
Lernoux M, Schnekenburger M, Dicato M, Diederich M (2020) Epigenetic mechanisms underlying the therapeutic effects of HDAC inhibitors in chronic myeloid leukemia. Biochem Pharmacol 173:113698. https://doi.org/10.1016/j.bcp.2019.113698
doi: 10.1016/j.bcp.2019.113698 pubmed: 31706847
Munster PN, Marchion D, Thomas S et al (2009) Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br J Cancer 101(7):1044–1050. https://doi.org/10.1038/sj.bjc.6605293
doi: 10.1038/sj.bjc.6605293 pubmed: 19738609 pmcid: 2768109
Dai Y, Chen S, Venditti CA et al (2008) Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood 112(3):793–804. https://doi.org/10.1182/blood-2007-10-116376
doi: 10.1182/blood-2007-10-116376 pubmed: 18505786 pmcid: 2481545
Fiskus W, Pranpat M, Balasis M et al (2006) Cotreatment with vorinostat (suberoylanilide hydroxamic acid) enhances activity of dasatinib (BMS-354825) against imatinib mesylate-sensitive or imatinib mesylate-resistant chronic myelogenous leukemia cells. Clin Cancer Res 12(19):5869–5878. https://doi.org/10.1158/1078-0432.Ccr-06-0980
doi: 10.1158/1078-0432.Ccr-06-0980 pubmed: 17020995

Auteurs

Tom C Karagiannis (TC)

Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia. karat@unimelb.edu.au.
Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia. karat@unimelb.edu.au.
Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia. karat@unimelb.edu.au.
Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia. karat@unimelb.edu.au.
Epigenomic in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia. karat@unimelb.edu.au.

Meaghan Wall (M)

Victorian Cancer Cytogenetics Service, St Vincent's Hospital, Fitzroy, VIC, 3065, Australia.
Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia.

Katherine Ververis (K)

Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia.
Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Eleni Pitsillou (E)

Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia.
School of Science, STEM College, RMIT University, VIC, 3001, Australia.

Stephanie M Tortorella (SM)

Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia.
Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Peter A Wood (PA)

Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia.

Haloom Rafehi (H)

Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.

Ishant Khurana (I)

Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia.

Scott S Maxwell (SS)

Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia.

Andrew Hung (A)

School of Science, STEM College, RMIT University, VIC, 3001, Australia.

Jitraporn Vongsvivut (J)

ANSTO-Australian Synchrotron, Clayton, VIC, 3168, Australia.

Assam El-Osta (A)

Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia.
Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30‑32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH