Mapping of major QTL and candidate gene analysis for hull colour in foxtail millet (Setaria italica (L.) P. Beauv.).


Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
15 Aug 2023
Historique:
received: 19 12 2022
accepted: 13 07 2023
medline: 17 8 2023
pubmed: 16 8 2023
entrez: 15 8 2023
Statut: epublish

Résumé

Hull colour is an important morphological marker for selection in seed production of foxtail millet. However, the molecular mechanisms underlying hull colour variation remain unknown. An F This is the first study to use an inheritance model and QTL mapping to determine the genetic mechanisms of hull colour trait in foxtail millet. We identified six major environmentally stable QTL and predicted five potential candidate genes to be associated with hull colour. These results advance the current understanding of the genetic mechanisms underlying hull colour traits in foxtail millet and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.

Sections du résumé

BACKGROUND BACKGROUND
Hull colour is an important morphological marker for selection in seed production of foxtail millet. However, the molecular mechanisms underlying hull colour variation remain unknown.
RESULTS RESULTS
An F
CONCLUSIONS CONCLUSIONS
This is the first study to use an inheritance model and QTL mapping to determine the genetic mechanisms of hull colour trait in foxtail millet. We identified six major environmentally stable QTL and predicted five potential candidate genes to be associated with hull colour. These results advance the current understanding of the genetic mechanisms underlying hull colour traits in foxtail millet and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.

Identifiants

pubmed: 37582696
doi: 10.1186/s12864-023-09517-9
pii: 10.1186/s12864-023-09517-9
pmc: PMC10428602
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

458

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Zhi H, He Q, Tang S, Yang JJ, Zhang W, Liu HF, Jia YC, Jia GQ, Zhang AY, Li YH, Guo EH, Gao M, Li SJ, Li JX, Qin N, Zhu CC, Ma CY, Zhang HJ, Chen GQ, Zhang WF, Wang HG, Qiao ZJ, Li SG, Cheng RH, Xing L, Wang SY, Liu JR, Liu J, Diao XM. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theor Appl Genet. 2021;134:3023–36.
doi: 10.1007/s00122-021-03875-2 pubmed: 34081150
Xie HF, Hou JL, Fu N, Wei MH, Li YF, Yu K, Song H, Li SM, Liu JR. Identification of QTL related to anther color and hull color by RAD sequencing in a RIL population of Setaria italica. BMC Genomics. 2021;22:1–13.
doi: 10.1186/s12864-021-07882-x
Diao XM. Adance in foxtial millet biotechnology and its future directions. J Hebei Agri Sci. 2005;4:61–8.
Awika JM, Rooney LW, Waniska RD. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005;90:293–301.
doi: 10.1016/j.foodchem.2004.03.058
Morgounov A, Karaduman Y, Akin B, Aydogan S, Baenziger PS, Bhatta M, Chudinov V, Dreisigacker S, Govindan V, Güler S, Guzman C, Nehe A, Poudel R, Rose D, Gordeeva E, Shamanin V, Subasi K, Zelenskiy Y, Khlestkina E. Yield and quality in purple-grained wheat isogenic lines. Agronomy. 2020;10:86.
doi: 10.3390/agronomy10010086
Shen Y, Jin L, Xiao P, Lu Y, Bao JS. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J Cereal Sci. 2009;49:106–14.
doi: 10.1016/j.jcs.2008.07.010
Tian B, Zhang L, Hu J, Liu Y, Zhou L, Ping W, Zou J, Li H. Genetic characterization of hull color using BSR-Seq and genome re-sequencing approaches in foxtail millet. Front Plant Sci. 2022;13:1019496.
doi: 10.3389/fpls.2022.1019496 pubmed: 36262655 pmcid: 9574255
Joseph M, Grotewold E, Koes R. How genes paint flowers and seeds. Trends Plant Sci. 1998;3:212–7.
doi: 10.1016/S1360-1385(98)01242-4
Sun MJ, Kang XR, Wang TT, Fan LR, Wang H, Pan H, Yang QG, Liu HM, Lou YH, Zhuge YP. Genotypic diversity of quality traits in Chinese foxtail millet (Setaria italica L.) and the establishment of a quality evaluation system. Food Chem. 2021;353:129421.
doi: 10.1016/j.foodchem.2021.129421 pubmed: 33714791
Li SH, Zhao W, Liu SY, Li PL, Zhang AX, Zhang JL, Wang YT, Liu YY, Liu JK. Characterization of nutritional properties and aroma compounds in different colored kernel varieties of foxtail millet (Setaria italica). J Cereal Sci. 2021;100: 103248.
doi: 10.1016/j.jcs.2021.103248
Xiao L, Lu P, Shao Y, Shen YF, Bao Y. Quantitative trait loci for brown rice color, phenolics, flavonoid contents, and antioxidant capacity in rice grain. Cereal Chem. 2009;86:609–15.
doi: 10.1094/CCHEM-86-6-0609
Wang JK, Gai JY. Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica. 2001;122:9–18.
doi: 10.1023/A:1012649506212
Sun XR, Liu L, Zhi XN, Bai JR, Cui YN, Shu JS, Li JM. Genetic analysis of tomato internode length via mixed major gene plus polygene inheritance model. Sci Hortic. 2019;246:759–64.
doi: 10.1016/j.scienta.2018.11.044
Liang HZ, Yu YL, Yang HQ, Xu LJ, Dong W, Du H, Cui WW, Zhang HY. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet. 2014;127:2127–37.
doi: 10.1007/s00122-014-2366-z pubmed: 25145446
Ye YJ, Wu JY, Lu F, Ju YQ, Cai M, Cheng TR, Pan HT, Zhang QX. Heritability and gene effects for plant architecture traits of crape myrtle using major gene plus polygene inheritance analysis. Sci Hortic. 2017;225:335–42.
doi: 10.1016/j.scienta.2017.06.065
Zheng XJ, Tang YQ, Ye JL, Pan ZY, Tan ML, Xie ZZ, Chai LJ, Xu Q, Fraser PD, Deng XX. SLAF-based construction of a high-density genetic map and its application in QTL mapping of carotenoids content in citrus fruit. J Agric Food Chem. 2018;67:994–1002.
doi: 10.1021/acs.jafc.8b05176
Jia GQ, Huang XH, Zhi H, Zhao Y, Zhao Q, Li WJ, Chai Y, Yang LF, Liu KY, Lu HY, Zhu CR, Lu YQ, Zhou CC, Fan DL, Wen QJ, Guo YL, Huang T, Zhang L, Lu TT, Feng Q, Hao HF, Liu HK, Lu P, Zhang N, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet. 2013;45:957–61.
doi: 10.1038/ng.2673 pubmed: 23793027
Mares DJ, Campbell AW. Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res. 2001;52:1297–309.
doi: 10.1071/AR01048
Peterson CJ, Shelton DR, Martin TJ, Sears RG, Williams E, Graybosch R. Grain color stability and classification of hard white wheat in the U.S. Euphytica. 2001;119:101–7.
doi: 10.1023/A:1017515127628
Lukow OM, Adams K, Suchy J, DePauw RM, Humphreys G. The effect of the environment on the grain colour and quality of commercially grown Canada hard white spring wheat, Triticum aestivum L. ‘Snowbird.’ Can J Plant Sci. 2013;93:1–11.
doi: 10.4141/cjps2012-102
Wang J, Yang HQ, Du GH, Wang ZL, Zou HF, Du XF, Li YF, Peng JX, Guo EH, Yong JP, Han F, Cai W, Xia QJ, Yuan GB, Yuan F, Ni XM, Zhang YY, Peng SZ. Mapping of Sihc1, which controls hull color, using a high-density genetic map based on restriction site-associated DNA sequencing in foxtail millet [Setaria italica (L.) P. Beauv.]. Mol Breed. 2017;37:1–10.
doi: 10.1007/s11032-017-0727-4
Cai W, Morishima H. QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet. 2002;104:1217–28.
doi: 10.1007/s00122-001-0819-7 pubmed: 12582574
Shao T, Qian Q, Tang D, Chen J, Li M, Cheng ZK, Luo Q. A novel gene IBF1 is required for the inhibition of brown pigment deposition in rice hull furrows. Theor Appl Genet. 2012;125:381–90.
doi: 10.1007/s00122-012-1840-8 pubmed: 22419106
Shao YF, Jin L, Zhang G, Lu Y, Shen Y, Bao JS. Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theor Appl Genet. 2011;122:1005–16.
doi: 10.1007/s00122-010-1505-4 pubmed: 21161500
Anderson NA, Tobimatsu Y, Ciesielski PN, Ximenes E, Ralph J, Donohoe BS, Ladisch M, Chapple C. Manipulation of guaiacyl and syringyl monomer biosynthesis in an arabidopsis cinnamyl alcohol dehydrogenase mutant results in atypical lignin biosynthesis and modified cell wall structure. Plant Cell. 2015;27:2195–209.
doi: 10.1105/tpc.15.00373 pubmed: 26265762 pmcid: 4568507
Zhang KW, Qian Q, Huang ZJ, Wang YQ, Li M, Hong LL, Zeng DL, Gu MH, Chu C, Cheng ZK. Gold hull and internode2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol. 2006;140:972–83.
doi: 10.1104/pp.105.073007 pubmed: 16443696 pmcid: 1400561
Wang H, Zhang YX, Sun LP, Meng S, Xu P, Wu WX, Cheng SH, Cao LY. Map-based cloning of OsCAD2 regulating golden hull and internode in rice. Scientia Agricultuar Sinica. 2017;31:465–74.
Hirano K, Aya K, Kondo M, Okuno A, Morinaka Y, Matsuoka M. OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Rep. 2012;31:91–101.
doi: 10.1007/s00299-011-1142-7 pubmed: 21912859
Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B. Identification of the Arabidopsis thaliana flavonoid 3’-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem. 2000;381:749–53.
doi: 10.1515/BC.2000.095 pubmed: 11030432
Kanga XF, Akita Y, Mikami R. Isolation and analysis of flavonoid 3'-hydroxylase (f3'h) genes from cyclamen 'strauss'. Acta Horticulturae. 2020;1312:105–10.
Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 2017;17:471–82.
doi: 10.1038/cr.2007.40
Zhao CJ, Safdar LB, Xie ML, Shi MJ, Dong ZX, Yang L, Cheng XH, Liu YY, Bai ZT, Xiang Y, Tong CB, Huang JY, Liu LJ, Liu SY. Mutation of the PHYTOENE DESATURASE 3 gene causes yellowish-white petals in Brassica napus. Crop J. 2021;9:1124–34.
doi: 10.1016/j.cj.2020.10.012
Gai JY. Segregation analysis on genetic system of quantitative traits in plants. Hereditas. 2006;1:85–92.
Cao XW, Liu B, Zhang YM. SEA: a software package of segregation analysis of quantitative traits in plants. Nanjing Agric Univ. 2013;36:1–6.
Zhang YM, Gai JY, Wang YJ. An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations. Hereditas. 2001;23:467–70.
Chen DH, Ronald PC. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Report. 1999;17:53–7.
doi: 10.1023/A:1007585532036
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 genome project data processing subgroup. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:2078–9.
doi: 10.1093/bioinformatics/btp352 pubmed: 19505943 pmcid: 2723002
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
doi: 10.1101/gr.107524.110 pubmed: 20644199 pmcid: 2928508
Wu Y, Bhat PR, Close TJ, Lonardi S, Kruglyak L. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 2008;4: e1000212.
doi: 10.1371/journal.pgen.1000212 pubmed: 18846212 pmcid: 2556103
Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang QF. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA. 2010;107:10578–1058.
doi: 10.1073/pnas.1005931107 pubmed: 20498060 pmcid: 2890813
Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47(D1):D590–5.
doi: 10.1093/nar/gky962 pubmed: 30321428

Auteurs

Shuqing Guo (S)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Shaohua Chai (S)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Yan Guo (Y)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Xing Shi (X)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Fei Han (F)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Ting Qu (T)

Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China.

Lu Xing (L)

Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China.

Qinghua Yang (Q)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Jinfeng Gao (J)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Xiaoli Gao (X)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Baili Feng (B)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.

Hui Song (H)

Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China. 837181622@qq.com.

Pu Yang (P)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China. yangpu5532@hotmail.com.

Articles similaires

Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Humans Carcinoma, Hepatocellular Liver Neoplasms Aged United States

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase

Classifications MeSH