AMBRA1 phosphorylation by CDK1 and PLK1 regulates mitotic spindle orientation.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
16 Aug 2023
Historique:
received: 31 12 2022
accepted: 17 07 2023
revised: 27 06 2023
medline: 17 8 2023
pubmed: 16 8 2023
entrez: 16 8 2023
Statut: epublish

Résumé

AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.

Identifiants

pubmed: 37584777
doi: 10.1007/s00018-023-04878-6
pii: 10.1007/s00018-023-04878-6
pmc: PMC10432340
doi:

Substances chimiques

Protein Serine-Threonine Kinases EC 2.7.11.1
Cell Cycle Proteins 0
CDK1 protein, human EC 2.7.11.22
CDC2 Protein Kinase EC 2.7.11.22
AMBRA1 protein, human 0
Adaptor Proteins, Signal Transducing 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

251

Subventions

Organisme : Kræftens Bekæmpelse
ID : R72-A4408
Organisme : Kræftens Bekæmpelse
ID : R146-A9364
Organisme : Novo Nordisk Fonden
ID : 7559
Organisme : Novo Nordisk Fonden
ID : 22544
Organisme : Lundbeckfonden
ID : R233-2016-3360
Organisme : LEO Fondet
ID : LF17024
Organisme : Associazione Italiana per la Ricerca sul Cancro
ID : 23543

Informations de copyright

© 2023. The Author(s).

Références

Fimia GM, Stoykova A, Romagnoli A et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125. https://doi.org/10.1038/nature05925
doi: 10.1038/nature05925 pubmed: 17589504
Cianfanelli V, Fuoco C, Lorente M et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 17:20–30. https://doi.org/10.1038/ncb3072
doi: 10.1038/ncb3072 pubmed: 25438055
Di Rita A, Strappazzon F (2017) AMBRA1, a novel BH3-like protein: new insights into the AMBRA1–BCL2-family proteins relationship. Int Rev Cell Mol Biol 330:85–113. https://doi.org/10.1016/bs.ircmb.2016.09.002
doi: 10.1016/bs.ircmb.2016.09.002 pubmed: 28215535
Di Rita A, D’Acunzo P, Simula L et al (2018) AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH-SY5Y cells. Front Cell Neurosci 12:1–11. https://doi.org/10.3389/fncel.2018.00092
doi: 10.3389/fncel.2018.00092
Gu W, Wan D, Qian Q et al (2014) Ambra1 is an essential regulator of autophagy and apoptosis in SW620 cells: pro-survival role of Ambra1. PLoS ONE 9:e90151. https://doi.org/10.1371/journal.pone.0090151
doi: 10.1371/journal.pone.0090151 pubmed: 24587252 pmcid: 3936000
Nazio F, Strappazzon F, Antonioli M et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15:406–416. https://doi.org/10.1038/ncb2708
doi: 10.1038/ncb2708 pubmed: 23524951
Strappazzon F, Di Rita A, Cianfanelli V et al (2016) Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy 12:963–975. https://doi.org/10.1080/15548627.2016.1164359
doi: 10.1080/15548627.2016.1164359 pubmed: 27123694 pmcid: 4922440
Strappazzon F, Di Rita A, Peschiaroli A et al (2019) HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ. https://doi.org/10.1038/s41418-019-0404-8
doi: 10.1038/s41418-019-0404-8 pubmed: 31434979 pmcid: 7206139
Cianfanelli V, Nazio F, Cecconi F (2015) Connecting autophagy: AMBRA1 and its network of regulation. Mol Cell Oncol 2:e970059. https://doi.org/10.4161/23723548.2014.970059
doi: 10.4161/23723548.2014.970059 pubmed: 27308402 pmcid: 4905234
Schoenherr C, Byron A, Griffith B et al (2020) The autophagy protein Ambra1 regulates gene expression by supporting novel transcriptional complexes. J Biol Chem 295:12045–12057. https://doi.org/10.1074/jbc.RA120.012565
doi: 10.1074/jbc.RA120.012565 pubmed: 32616651 pmcid: 7443501
Antonioli M, Albiero F, Nazio F et al (2014) AMBRA1 interplay with cullin E3 Ubiquitin ligases regulates autophagy dynamics. Dev Cell 31:734–746. https://doi.org/10.1016/j.devcel.2014.11.013
doi: 10.1016/j.devcel.2014.11.013 pubmed: 25499913
Di Bartolomeo S, Corazzari M, Nazio F et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168. https://doi.org/10.1083/jcb.201002100
doi: 10.1083/jcb.201002100 pubmed: 20921139 pmcid: 2953445
Skobo T, Benato F, Grumati P et al (2014) Zebrafish AMBRA1a and AMBRA1b knockdown impairs skeletal muscle development. PLoS One 9:1–13. https://doi.org/10.1371/journal.pone.0099210
doi: 10.1371/journal.pone.0099210
Maiani E, Milletti G, Nazio F et al (2021) AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature 592:799–803. https://doi.org/10.1038/s41586-021-03422-5
doi: 10.1038/s41586-021-03422-5 pubmed: 33854232 pmcid: 8864551
Simoneschi D, Rona G, Zhou N et al (2022) CRL4AMBRA1 is a master regulator of D-type cyclins. Nature 592:789–793. https://doi.org/10.1038/s41586-021-03445-y.CRL4
doi: 10.1038/s41586-021-03445-y.CRL4
Chaikovsky AC, Li C, Jeng EE et al (2021) The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 592:794–798. https://doi.org/10.1038/s41586-021-03474-7
doi: 10.1038/s41586-021-03474-7 pubmed: 33854239 pmcid: 8246597
Bayliss R, Fry A, Haq T, Yeoh S (2012) On the molecular mechanisms of mitotic kinase activation. Open Biol 2:120136. https://doi.org/10.1098/rsob.120136
doi: 10.1098/rsob.120136 pubmed: 23226601 pmcid: 3513839
Brown NR, Korolchuk S, Martin MP et al (2015) CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nat Commun 6:6769. https://doi.org/10.1038/ncomms7769
doi: 10.1038/ncomms7769 pubmed: 25864384 pmcid: 4413027
Combes G, Alharbi I, Braga LG, Elowe S (2017) Playing polo during mitosis: PLK1 takes the lead. Oncogene 36:4819–4827. https://doi.org/10.1038/onc.2017.113
doi: 10.1038/onc.2017.113 pubmed: 28436952
Lee S-Y, Jang C, Lee K-A (2014) Polo-like kinases (plks), a key regulator of cell cycle and new potential target for cancer therapy. Dev Reprod 18:65–71. https://doi.org/10.12717/DR.2014.18.1.065
doi: 10.12717/DR.2014.18.1.065 pubmed: 25949173 pmcid: 4282265
Yuan K, Huang Y, Yao X (2011) Illumination of mitotic orchestra during cell division: a polo view. Cell Signal 23:1–5. https://doi.org/10.1016/j.cellsig.2010.07.003
doi: 10.1016/j.cellsig.2010.07.003 pubmed: 20633640
Benada J, Burdová K, Lidak T et al (2015) Polo-like kinase 1 inhibits DNA damage response during mitosis. Cell Cycle 14:219–231. https://doi.org/10.4161/15384101.2014.977067
doi: 10.4161/15384101.2014.977067 pubmed: 25607646 pmcid: 4613155
Matthess Y, Raab M, Knecht R et al (2014) Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol 8:596–608. https://doi.org/10.1016/j.molonc.2013.12.013
doi: 10.1016/j.molonc.2013.12.013 pubmed: 24484936 pmcid: 5528627
O’Donovan DS, MacFhearraigh S, Whitfield J et al (2013) Sequential Cdk1 and Plk1 phosphorylation of protein tyrosine phosphatase 1B promotes mitotic cell death. Cell Death Dis 4:e468. https://doi.org/10.1038/cddis.2012.208
doi: 10.1038/cddis.2012.208 pubmed: 23348582 pmcid: 3563996
Pintard L, Archambault V (2018) A unified view of spatio-temporal control of mitotic entry: polo kinase as the key. Open Biol 8:180114. https://doi.org/10.1098/rsob.180114
doi: 10.1098/rsob.180114 pubmed: 30135239 pmcid: 6119860
Zhang X, Chen Q, Feng J et al (2009) Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J Cell Sci 122:2240–2251. https://doi.org/10.1242/jcs.042747
doi: 10.1242/jcs.042747 pubmed: 19509060
Prosser SL, Pelletier L (2017) Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol 18:187–201. https://doi.org/10.1038/nrm.2016.162
doi: 10.1038/nrm.2016.162 pubmed: 28174430
Morin X, Bellaïche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21:102–119. https://doi.org/10.1016/j.devcel.2011.06.012
doi: 10.1016/j.devcel.2011.06.012 pubmed: 21763612
Radulescu AE, Cleveland DW (2010) NuMA after 30 years: the matrix revisited. Trends Cell Biol 20:214–222. https://doi.org/10.1016/j.tcb.2010.01.003
doi: 10.1016/j.tcb.2010.01.003 pubmed: 20137953 pmcid: 3137513
Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119:503–516. https://doi.org/10.1016/j.cell.2004.10.028
doi: 10.1016/j.cell.2004.10.028 pubmed: 15537540
Kotak S, Busso C, Gönczy P (2012) Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 199:97–110. https://doi.org/10.1083/jcb.201203166
doi: 10.1083/jcb.201203166 pubmed: 23027904 pmcid: 3461507
Kiyomitsu T, Cheeseman IM (2012) Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 14:311–317. https://doi.org/10.1038/ncb2440
doi: 10.1038/ncb2440 pubmed: 22327364 pmcid: 3290711
Seldin L, Muroyama A, Lechler T (2016) NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. Elife 5:e12504. https://doi.org/10.7554/eLife.12504.001
doi: 10.7554/eLife.12504.001 pubmed: 26765568 pmcid: 4758947
Pirovano L, Culurgioni S, Carminati M et al (2019) Hexameric NuMA:LGN structures promote multivalent interactions required for planar epithelial divisions. Nat Commun 10:1–14. https://doi.org/10.1038/s41467-019-09999-w
doi: 10.1038/s41467-019-09999-w
Gloerich M, Bianchini JM, Siemers KA et al (2017) Cell division orientation is coupled to cell–cell adhesion by the E-cadherin/LGN complex. Nat Commun 8:1–11. https://doi.org/10.1038/ncomms13996
doi: 10.1038/ncomms13996
Okumura M, Natsume T, Kanemaki MT, Kiyomitsu T (2018) Dynein–dynactin–NuMA clusters generate cortical spindle-pulling forces as a multiarm ensemble. Elife 7:1–24. https://doi.org/10.7554/eLife.36559
doi: 10.7554/eLife.36559
Seldin L, Macara I (2017) Epithelial spindle orientation diversities and uncertainties: recent developments and lingering questions. F1000Research 6:1–9. https://doi.org/10.12688/f1000research.11370.1
doi: 10.12688/f1000research.11370.1
Hueschen CL, Kenny SJ, Xu K, Dumont S (2017) NuMA targets dynein to microtubule minus-ends at mitosis. bioRxiv. https://doi.org/10.1101/148692
doi: 10.1101/148692
Gallini S, Carminati M, De Mattia F et al (2016) NuMA phosphorylation by aurora-a orchestrates spindle orientation. Curr Biol 26:458–469. https://doi.org/10.1016/j.cub.2015.12.051
doi: 10.1016/j.cub.2015.12.051 pubmed: 26832443
Polverino F, Naso FD, Asteriti IA et al (2020) The Aurora-A/TPX2 axis directs spindle orientation in adherent human cells by regulating NuMA and microtubule stability. Curr Biol. https://doi.org/10.1016/j.cub.2020.10.096
doi: 10.1016/j.cub.2020.10.096 pubmed: 33275894
Kotak S, Busso C, Gönczy P (2013) NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. EMBO J 32:2517–2529. https://doi.org/10.1038/emboj.2013.172
doi: 10.1038/emboj.2013.172 pubmed: 23921553 pmcid: 3770949
Sana S, Keshri R, Rajeevan A et al (2018) Plk1 regulates spindle orientation by phosphorylating NuMA in human cells. Life Sci Alliance 1:e201800223. https://doi.org/10.26508/lsa.201800223
doi: 10.26508/lsa.201800223 pubmed: 30456393 pmcid: 6240335
Kõivomägi M, Örd M, Iofik A et al (2013) Multisite phosphorylation networks as signal processors for Cdk1. Nat Struct Mol Biol 20:1415–1424. https://doi.org/10.1038/nsmb.2706.Multisite
doi: 10.1038/nsmb.2706.Multisite pubmed: 24186061
Furuya T, Kim M, Lipinski M et al (2010) Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38:500–511. https://doi.org/10.1016/j.molcel.2010.05.009
doi: 10.1016/j.molcel.2010.05.009 pubmed: 20513426 pmcid: 2888511
Elia AEH, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science (80–) 299:1228–1231. https://doi.org/10.1126/science.1079079
doi: 10.1126/science.1079079
Strappazzon F, Vietri-Rudan M, Campello S et al (2011) Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J 30:1195–1208. https://doi.org/10.1038/emboj.2011.49
doi: 10.1038/emboj.2011.49 pubmed: 21358617 pmcid: 3094111
Van Humbeeck C, Cornelissen T, Hofkens H et al (2011) Parkin interacts with AMBRA1 to induce mitophagy. J Neurosci 31:10249–10261. https://doi.org/10.1523/JNEUROSCI.1917-11.2011
doi: 10.1523/JNEUROSCI.1917-11.2011 pubmed: 21753002 pmcid: 6623066
Xia P, Wang S, Du Y et al (2013) WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J 32:2685–2696. https://doi.org/10.1038/emboj.2013.189
doi: 10.1038/emboj.2013.189 pubmed: 23974797 pmcid: 3801434
Xia P, Wang S, Huang G et al (2014) RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res 24:943–958. https://doi.org/10.1038/cr.2014.85
doi: 10.1038/cr.2014.85 pubmed: 24980959 pmcid: 4123297
Di Rita A, Peschiaroli A, Acunzo PD et al (2018) HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun 9:1–18. https://doi.org/10.1038/s41467-018-05722-3
doi: 10.1038/s41467-018-05722-3
Schoenherr C, Byron A, Sandilands E et al (2017) Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks. Elife 6:1–22. https://doi.org/10.7554/eLife.23172
doi: 10.7554/eLife.23172
Cianfanelli V, De Zio D, Di Bartolomeo S et al (2015) AMBRA1 at a glance. J Cell Sci 128:2003–2008. https://doi.org/10.1242/jcs.168153
doi: 10.1242/jcs.168153 pubmed: 26034061
Eskelinen E-L, Prescott AR, Cooper J et al (2002) Inhibition of autophagy in mitotic animal cells. Traffic 3:878–893. https://doi.org/10.1034/j.1600-0854.2002.31204.x
doi: 10.1034/j.1600-0854.2002.31204.x pubmed: 12453151
Li Z, Ji X, Wang D et al (2016) Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle. Oncotarget 12:1–3. https://doi.org/10.18632/oncotarget.9451
doi: 10.18632/oncotarget.9451
Odle RI, Walker SA, Oxley D et al (2019) An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis. Mol Cell 77:1–13. https://doi.org/10.1016/j.molcel.2019.10.016
doi: 10.1016/j.molcel.2019.10.016
Willson J (2020) Mitosis flips the switch on autophagy control. Nat Rev Mol Cell Biol 21:4–5. https://doi.org/10.1038/s41580-019-0196-1
doi: 10.1038/s41580-019-0196-1 pubmed: 31758162
Li Z, Tian X, Ji X et al (2020) ULK1-ATG13 and their mitotic phospho-regulation by CDK1 connect autophagy to cell cycle. PLoS Biol 18:1–29. https://doi.org/10.1371/journal.pbio.3000288
doi: 10.1371/journal.pbio.3000288
Holdgaard SG, Cianfanelli V, Pupo E et al (2019) Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites. Nat Commun 10:1–19. https://doi.org/10.1038/s41467-019-12094-9
doi: 10.1038/s41467-019-12094-9
Holdgaard SG, Cianfanelli V, Cecconi F (2019) Cloud hunting: doryphagy, a form of selective macroautophagy that degrades centriolar satellites. Autophagy. https://doi.org/10.1080/15548627.2019.1703356
doi: 10.1080/15548627.2019.1703356 pubmed: 31847687 pmcid: 6984448
Liu L, XIe R, Nguyen S et al (2009) Robust autophagy/mitophagy persists during mitosis Leyuan. Cell Cycle 8:1616–1620. https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations
doi: 10.1016/j.pestbp.2011.02.012.Investigations pubmed: 19411827
Loukil A, Zonca M, Rebouissou C et al (2014) High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy. J Cell Sci 127:2145–2150. https://doi.org/10.1242/jcs.139188
doi: 10.1242/jcs.139188 pubmed: 24634511
Linares JF, Amanchy R, Greis K et al (2011) Phosphorylation of p62 by cdk1 controls the timely transit of cells through mitosis and tumor cell proliferation. Mol Cell Biol 31:105–117. https://doi.org/10.1128/MCB.00620-10
doi: 10.1128/MCB.00620-10 pubmed: 20974803
Frémont S, Gérard A, Galloux M et al (2013) Beclin-1 is required for chromosome congression and proper outer kinetochore assembly. EMBO Rep 14:364–372. https://doi.org/10.1038/embor.2013.23
doi: 10.1038/embor.2013.23 pubmed: 23478334 pmcid: 3615652
Maskey D, Yousefi S, Schmid I et al (2013) ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 4:1–14. https://doi.org/10.1038/ncomms3130
doi: 10.1038/ncomms3130
Woodard GE, Huang N-N, Cho H et al (2010) Ric-8A and Giα recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol Cell Biol 30:3519–3530. https://doi.org/10.1128/mcb.00394-10
doi: 10.1128/mcb.00394-10 pubmed: 20479129 pmcid: 2897540
Couwenbergs C, Labbé JC, Goulding M et al (2007) Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans. J Cell Biol 179:15–22. https://doi.org/10.1083/jcb.200707085
doi: 10.1083/jcb.200707085 pubmed: 17908918 pmcid: 2064726
Nguyen-Ngoc T, Afshar K, Gönczy P (2007) Coupling of cortical dynein and Gα proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 9:1294–1302. https://doi.org/10.1038/ncb1649
doi: 10.1038/ncb1649 pubmed: 17922003
Keshri R, Rajeevan A, Kotak S (2020) PP2A–B55γ counteracts Cdk1 and regulates proper spindle orientation through the cortical dynein adaptor NuMA. J Cell Sci. https://doi.org/10.1242/jcs.243857
doi: 10.1242/jcs.243857 pubmed: 32591484 pmcid: 7406356
Giráldez S, Galindo-Moreno M, Limón-Mortés MC et al (2017) G1/S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis. FASEB J 31:2925–2936. https://doi.org/10.1096/fj.201601108R
doi: 10.1096/fj.201601108R pubmed: 28360195
de Cárcer G, Venkateswaran SV, Salgueiro L et al (2018) Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun. https://doi.org/10.1038/s41467-018-05429-5
doi: 10.1038/s41467-018-05429-5 pubmed: 30069007 pmcid: 6070485
Quintyne NJ, Reing JE, Hoffelder DR et al (2005) Spindle multipolarity is prevented by centrosomal clustering. Science (80–) 307:127–129. https://doi.org/10.1126/science.1104905
doi: 10.1126/science.1104905
Bergstralh DT, St Johnston D (2014) Spindle orientation: What if it goes wrong? Semin Cell Dev Biol 34:140–145. https://doi.org/10.1016/j.semcdb.2014.06.014
doi: 10.1016/j.semcdb.2014.06.014 pubmed: 24972323 pmcid: 4169663
Bergstralh DT, Dawney NS, St Johnston D (2017) Spindle orientation: a question of complex positioning. Development 144:1137–1145. https://doi.org/10.1242/dev.140764
doi: 10.1242/dev.140764 pubmed: 28351864
Sander JD, Zaback P, Joung JK et al (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35:599–605. https://doi.org/10.1093/nar/gkm349
doi: 10.1093/nar/gkm349
Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475. https://doi.org/10.1093/bioinformatics/btu048
doi: 10.1093/bioinformatics/btu048 pubmed: 24463181 pmcid: 4016707
Zhou Y, Liu Y, Hussmann D et al (2016) Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci 73:2543–2563. https://doi.org/10.1007/s00018-015-2128-3
doi: 10.1007/s00018-015-2128-3 pubmed: 26755436
Schorl C, Sedivy JM (2007) Analysis of cell cycle phases and progression in cultured mammalian cells. Methods 41:143–150. https://doi.org/10.1016/j.ymeth.2006.07.022
doi: 10.1016/j.ymeth.2006.07.022 pubmed: 17189856 pmcid: 1828876
Wiśniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–363. https://doi.org/10.1038/nmeth.1322
doi: 10.1038/nmeth.1322 pubmed: 19377485
Zarei M, Sprenger A, Gretzmeier C, Dengjel J (2013) Rapid combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis. J Proteome Res 12:5989–5995. https://doi.org/10.1021/pr4007969
doi: 10.1021/pr4007969 pubmed: 24144214
Asteriti IA, Di Cesare E, De Mattia F et al (2014) The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy. Oncotarget 5:6229–6242. https://doi.org/10.18632/oncotarget.2190
doi: 10.18632/oncotarget.2190 pubmed: 25153724 pmcid: 4171625
Liao S, Rajendraprasad G, Wang N et al (2019) Molecular basis of vasohibins-mediated detyrosination and its impact on spindle function and mitosis. Cell Res 29:533–547. https://doi.org/10.1038/s41422-019-0187-y
doi: 10.1038/s41422-019-0187-y pubmed: 31171830 pmcid: 6796878
Lee BH, Schwager F, Meraldi P, Gotta M (2018) p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. J Cell Biol 217:483–593. https://doi.org/10.1083/jcb.201707050
doi: 10.1083/jcb.201707050 pubmed: 29222185 pmcid: 5800812

Auteurs

Fiorella Faienza (F)

Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
Department of Biology, University of Rome Tor Vergata, Rome, Italy.

Federica Polverino (F)

Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy.

Girish Rajendraprasad (G)

Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark.

Giacomo Milletti (G)

Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.

Zehan Hu (Z)

Department of Biology, University of Fribourg, Fribourg, Switzerland.

Barbara Colella (B)

Department of Biosciences and Territory, University of Molise, Pesche, Italy.

Deborah Gargano (D)

Department of Biosciences and Territory, University of Molise, Pesche, Italy.

Flavie Strappazzon (F)

IRCCS Fondazione Santa Lucia, Rome, Italy.
Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène, Univ Lyon, Univ Lyon 1, CNRS, INSERM, 69008, Lyon, France.

Salvatore Rizza (S)

Redox Biology Group, Danish Cancer Institute, Copenhagen, Denmark.

Mette Vixø Vistesen (MV)

Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.

Yonglun Luo (Y)

Lars Bolund Institute of Regenerative Medicine and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Shenzhen, China.
Department of Biomedicine, Aarhus University, Aarhus, Denmark.

Manuela Antonioli (M)

Department of Biology, University of Rome Tor Vergata, Rome, Italy.
National Institute for Infectious Diseases, IRCSS "L. Spallanzani", Rome, Italy.

Valentina Cianfanelli (V)

Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Department of Science, University "ROMA TRE", 00146, Rome, Italy.
Department of Woman and Child Health and Public Health, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Caterina Ferraina (C)

Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Gian Maria Fimia (GM)

National Institute for Infectious Diseases, IRCSS "L. Spallanzani", Rome, Italy.
Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.

Giuseppe Filomeni (G)

Department of Biology, University of Rome Tor Vergata, Rome, Italy.
Redox Biology Group, Danish Cancer Institute, Copenhagen, Denmark.
Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.

Daniela De Zio (D)

Melanoma Research Team, Danish Cancer Institute, Copenhagen, Denmark.
Department of Drug Design and Pharmacology, University Of Copenhagen, Copenhagen, Denmark.

Joern Dengjel (J)

Department of Biology, University of Fribourg, Fribourg, Switzerland.

Marin Barisic (M)

Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark.
Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.

Giulia Guarguaglini (G)

Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy.

Sabrina Di Bartolomeo (S)

Department of Biosciences and Territory, University of Molise, Pesche, Italy. sabrina.dibartolomeo@unimol.it.

Francesco Cecconi (F)

Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark. cecconi@cancer.dk.
Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy. cecconi@cancer.dk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH