AMBRA1 phosphorylation by CDK1 and PLK1 regulates mitotic spindle orientation.
Cell cycle
Mitotic kinases
Mitotic spindle
NUMA1
Phosphorylation
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
16 Aug 2023
16 Aug 2023
Historique:
received:
31
12
2022
accepted:
17
07
2023
revised:
27
06
2023
medline:
17
8
2023
pubmed:
16
8
2023
entrez:
16
8
2023
Statut:
epublish
Résumé
AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.
Identifiants
pubmed: 37584777
doi: 10.1007/s00018-023-04878-6
pii: 10.1007/s00018-023-04878-6
pmc: PMC10432340
doi:
Substances chimiques
Protein Serine-Threonine Kinases
EC 2.7.11.1
Cell Cycle Proteins
0
CDK1 protein, human
EC 2.7.11.22
CDC2 Protein Kinase
EC 2.7.11.22
AMBRA1 protein, human
0
Adaptor Proteins, Signal Transducing
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
251Subventions
Organisme : Kræftens Bekæmpelse
ID : R72-A4408
Organisme : Kræftens Bekæmpelse
ID : R146-A9364
Organisme : Novo Nordisk Fonden
ID : 7559
Organisme : Novo Nordisk Fonden
ID : 22544
Organisme : Lundbeckfonden
ID : R233-2016-3360
Organisme : LEO Fondet
ID : LF17024
Organisme : Associazione Italiana per la Ricerca sul Cancro
ID : 23543
Informations de copyright
© 2023. The Author(s).
Références
Fimia GM, Stoykova A, Romagnoli A et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125. https://doi.org/10.1038/nature05925
doi: 10.1038/nature05925
pubmed: 17589504
Cianfanelli V, Fuoco C, Lorente M et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 17:20–30. https://doi.org/10.1038/ncb3072
doi: 10.1038/ncb3072
pubmed: 25438055
Di Rita A, Strappazzon F (2017) AMBRA1, a novel BH3-like protein: new insights into the AMBRA1–BCL2-family proteins relationship. Int Rev Cell Mol Biol 330:85–113. https://doi.org/10.1016/bs.ircmb.2016.09.002
doi: 10.1016/bs.ircmb.2016.09.002
pubmed: 28215535
Di Rita A, D’Acunzo P, Simula L et al (2018) AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH-SY5Y cells. Front Cell Neurosci 12:1–11. https://doi.org/10.3389/fncel.2018.00092
doi: 10.3389/fncel.2018.00092
Gu W, Wan D, Qian Q et al (2014) Ambra1 is an essential regulator of autophagy and apoptosis in SW620 cells: pro-survival role of Ambra1. PLoS ONE 9:e90151. https://doi.org/10.1371/journal.pone.0090151
doi: 10.1371/journal.pone.0090151
pubmed: 24587252
pmcid: 3936000
Nazio F, Strappazzon F, Antonioli M et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15:406–416. https://doi.org/10.1038/ncb2708
doi: 10.1038/ncb2708
pubmed: 23524951
Strappazzon F, Di Rita A, Cianfanelli V et al (2016) Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy 12:963–975. https://doi.org/10.1080/15548627.2016.1164359
doi: 10.1080/15548627.2016.1164359
pubmed: 27123694
pmcid: 4922440
Strappazzon F, Di Rita A, Peschiaroli A et al (2019) HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ. https://doi.org/10.1038/s41418-019-0404-8
doi: 10.1038/s41418-019-0404-8
pubmed: 31434979
pmcid: 7206139
Cianfanelli V, Nazio F, Cecconi F (2015) Connecting autophagy: AMBRA1 and its network of regulation. Mol Cell Oncol 2:e970059. https://doi.org/10.4161/23723548.2014.970059
doi: 10.4161/23723548.2014.970059
pubmed: 27308402
pmcid: 4905234
Schoenherr C, Byron A, Griffith B et al (2020) The autophagy protein Ambra1 regulates gene expression by supporting novel transcriptional complexes. J Biol Chem 295:12045–12057. https://doi.org/10.1074/jbc.RA120.012565
doi: 10.1074/jbc.RA120.012565
pubmed: 32616651
pmcid: 7443501
Antonioli M, Albiero F, Nazio F et al (2014) AMBRA1 interplay with cullin E3 Ubiquitin ligases regulates autophagy dynamics. Dev Cell 31:734–746. https://doi.org/10.1016/j.devcel.2014.11.013
doi: 10.1016/j.devcel.2014.11.013
pubmed: 25499913
Di Bartolomeo S, Corazzari M, Nazio F et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168. https://doi.org/10.1083/jcb.201002100
doi: 10.1083/jcb.201002100
pubmed: 20921139
pmcid: 2953445
Skobo T, Benato F, Grumati P et al (2014) Zebrafish AMBRA1a and AMBRA1b knockdown impairs skeletal muscle development. PLoS One 9:1–13. https://doi.org/10.1371/journal.pone.0099210
doi: 10.1371/journal.pone.0099210
Maiani E, Milletti G, Nazio F et al (2021) AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature 592:799–803. https://doi.org/10.1038/s41586-021-03422-5
doi: 10.1038/s41586-021-03422-5
pubmed: 33854232
pmcid: 8864551
Simoneschi D, Rona G, Zhou N et al (2022) CRL4AMBRA1 is a master regulator of D-type cyclins. Nature 592:789–793. https://doi.org/10.1038/s41586-021-03445-y.CRL4
doi: 10.1038/s41586-021-03445-y.CRL4
Chaikovsky AC, Li C, Jeng EE et al (2021) The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 592:794–798. https://doi.org/10.1038/s41586-021-03474-7
doi: 10.1038/s41586-021-03474-7
pubmed: 33854239
pmcid: 8246597
Bayliss R, Fry A, Haq T, Yeoh S (2012) On the molecular mechanisms of mitotic kinase activation. Open Biol 2:120136. https://doi.org/10.1098/rsob.120136
doi: 10.1098/rsob.120136
pubmed: 23226601
pmcid: 3513839
Brown NR, Korolchuk S, Martin MP et al (2015) CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nat Commun 6:6769. https://doi.org/10.1038/ncomms7769
doi: 10.1038/ncomms7769
pubmed: 25864384
pmcid: 4413027
Combes G, Alharbi I, Braga LG, Elowe S (2017) Playing polo during mitosis: PLK1 takes the lead. Oncogene 36:4819–4827. https://doi.org/10.1038/onc.2017.113
doi: 10.1038/onc.2017.113
pubmed: 28436952
Lee S-Y, Jang C, Lee K-A (2014) Polo-like kinases (plks), a key regulator of cell cycle and new potential target for cancer therapy. Dev Reprod 18:65–71. https://doi.org/10.12717/DR.2014.18.1.065
doi: 10.12717/DR.2014.18.1.065
pubmed: 25949173
pmcid: 4282265
Yuan K, Huang Y, Yao X (2011) Illumination of mitotic orchestra during cell division: a polo view. Cell Signal 23:1–5. https://doi.org/10.1016/j.cellsig.2010.07.003
doi: 10.1016/j.cellsig.2010.07.003
pubmed: 20633640
Benada J, Burdová K, Lidak T et al (2015) Polo-like kinase 1 inhibits DNA damage response during mitosis. Cell Cycle 14:219–231. https://doi.org/10.4161/15384101.2014.977067
doi: 10.4161/15384101.2014.977067
pubmed: 25607646
pmcid: 4613155
Matthess Y, Raab M, Knecht R et al (2014) Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol 8:596–608. https://doi.org/10.1016/j.molonc.2013.12.013
doi: 10.1016/j.molonc.2013.12.013
pubmed: 24484936
pmcid: 5528627
O’Donovan DS, MacFhearraigh S, Whitfield J et al (2013) Sequential Cdk1 and Plk1 phosphorylation of protein tyrosine phosphatase 1B promotes mitotic cell death. Cell Death Dis 4:e468. https://doi.org/10.1038/cddis.2012.208
doi: 10.1038/cddis.2012.208
pubmed: 23348582
pmcid: 3563996
Pintard L, Archambault V (2018) A unified view of spatio-temporal control of mitotic entry: polo kinase as the key. Open Biol 8:180114. https://doi.org/10.1098/rsob.180114
doi: 10.1098/rsob.180114
pubmed: 30135239
pmcid: 6119860
Zhang X, Chen Q, Feng J et al (2009) Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J Cell Sci 122:2240–2251. https://doi.org/10.1242/jcs.042747
doi: 10.1242/jcs.042747
pubmed: 19509060
Prosser SL, Pelletier L (2017) Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol 18:187–201. https://doi.org/10.1038/nrm.2016.162
doi: 10.1038/nrm.2016.162
pubmed: 28174430
Morin X, Bellaïche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21:102–119. https://doi.org/10.1016/j.devcel.2011.06.012
doi: 10.1016/j.devcel.2011.06.012
pubmed: 21763612
Radulescu AE, Cleveland DW (2010) NuMA after 30 years: the matrix revisited. Trends Cell Biol 20:214–222. https://doi.org/10.1016/j.tcb.2010.01.003
doi: 10.1016/j.tcb.2010.01.003
pubmed: 20137953
pmcid: 3137513
Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119:503–516. https://doi.org/10.1016/j.cell.2004.10.028
doi: 10.1016/j.cell.2004.10.028
pubmed: 15537540
Kotak S, Busso C, Gönczy P (2012) Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 199:97–110. https://doi.org/10.1083/jcb.201203166
doi: 10.1083/jcb.201203166
pubmed: 23027904
pmcid: 3461507
Kiyomitsu T, Cheeseman IM (2012) Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 14:311–317. https://doi.org/10.1038/ncb2440
doi: 10.1038/ncb2440
pubmed: 22327364
pmcid: 3290711
Seldin L, Muroyama A, Lechler T (2016) NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. Elife 5:e12504. https://doi.org/10.7554/eLife.12504.001
doi: 10.7554/eLife.12504.001
pubmed: 26765568
pmcid: 4758947
Pirovano L, Culurgioni S, Carminati M et al (2019) Hexameric NuMA:LGN structures promote multivalent interactions required for planar epithelial divisions. Nat Commun 10:1–14. https://doi.org/10.1038/s41467-019-09999-w
doi: 10.1038/s41467-019-09999-w
Gloerich M, Bianchini JM, Siemers KA et al (2017) Cell division orientation is coupled to cell–cell adhesion by the E-cadherin/LGN complex. Nat Commun 8:1–11. https://doi.org/10.1038/ncomms13996
doi: 10.1038/ncomms13996
Okumura M, Natsume T, Kanemaki MT, Kiyomitsu T (2018) Dynein–dynactin–NuMA clusters generate cortical spindle-pulling forces as a multiarm ensemble. Elife 7:1–24. https://doi.org/10.7554/eLife.36559
doi: 10.7554/eLife.36559
Seldin L, Macara I (2017) Epithelial spindle orientation diversities and uncertainties: recent developments and lingering questions. F1000Research 6:1–9. https://doi.org/10.12688/f1000research.11370.1
doi: 10.12688/f1000research.11370.1
Hueschen CL, Kenny SJ, Xu K, Dumont S (2017) NuMA targets dynein to microtubule minus-ends at mitosis. bioRxiv. https://doi.org/10.1101/148692
doi: 10.1101/148692
Gallini S, Carminati M, De Mattia F et al (2016) NuMA phosphorylation by aurora-a orchestrates spindle orientation. Curr Biol 26:458–469. https://doi.org/10.1016/j.cub.2015.12.051
doi: 10.1016/j.cub.2015.12.051
pubmed: 26832443
Polverino F, Naso FD, Asteriti IA et al (2020) The Aurora-A/TPX2 axis directs spindle orientation in adherent human cells by regulating NuMA and microtubule stability. Curr Biol. https://doi.org/10.1016/j.cub.2020.10.096
doi: 10.1016/j.cub.2020.10.096
pubmed: 33275894
Kotak S, Busso C, Gönczy P (2013) NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. EMBO J 32:2517–2529. https://doi.org/10.1038/emboj.2013.172
doi: 10.1038/emboj.2013.172
pubmed: 23921553
pmcid: 3770949
Sana S, Keshri R, Rajeevan A et al (2018) Plk1 regulates spindle orientation by phosphorylating NuMA in human cells. Life Sci Alliance 1:e201800223. https://doi.org/10.26508/lsa.201800223
doi: 10.26508/lsa.201800223
pubmed: 30456393
pmcid: 6240335
Kõivomägi M, Örd M, Iofik A et al (2013) Multisite phosphorylation networks as signal processors for Cdk1. Nat Struct Mol Biol 20:1415–1424. https://doi.org/10.1038/nsmb.2706.Multisite
doi: 10.1038/nsmb.2706.Multisite
pubmed: 24186061
Furuya T, Kim M, Lipinski M et al (2010) Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38:500–511. https://doi.org/10.1016/j.molcel.2010.05.009
doi: 10.1016/j.molcel.2010.05.009
pubmed: 20513426
pmcid: 2888511
Elia AEH, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science (80–) 299:1228–1231. https://doi.org/10.1126/science.1079079
doi: 10.1126/science.1079079
Strappazzon F, Vietri-Rudan M, Campello S et al (2011) Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J 30:1195–1208. https://doi.org/10.1038/emboj.2011.49
doi: 10.1038/emboj.2011.49
pubmed: 21358617
pmcid: 3094111
Van Humbeeck C, Cornelissen T, Hofkens H et al (2011) Parkin interacts with AMBRA1 to induce mitophagy. J Neurosci 31:10249–10261. https://doi.org/10.1523/JNEUROSCI.1917-11.2011
doi: 10.1523/JNEUROSCI.1917-11.2011
pubmed: 21753002
pmcid: 6623066
Xia P, Wang S, Du Y et al (2013) WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J 32:2685–2696. https://doi.org/10.1038/emboj.2013.189
doi: 10.1038/emboj.2013.189
pubmed: 23974797
pmcid: 3801434
Xia P, Wang S, Huang G et al (2014) RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res 24:943–958. https://doi.org/10.1038/cr.2014.85
doi: 10.1038/cr.2014.85
pubmed: 24980959
pmcid: 4123297
Di Rita A, Peschiaroli A, Acunzo PD et al (2018) HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun 9:1–18. https://doi.org/10.1038/s41467-018-05722-3
doi: 10.1038/s41467-018-05722-3
Schoenherr C, Byron A, Sandilands E et al (2017) Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks. Elife 6:1–22. https://doi.org/10.7554/eLife.23172
doi: 10.7554/eLife.23172
Cianfanelli V, De Zio D, Di Bartolomeo S et al (2015) AMBRA1 at a glance. J Cell Sci 128:2003–2008. https://doi.org/10.1242/jcs.168153
doi: 10.1242/jcs.168153
pubmed: 26034061
Eskelinen E-L, Prescott AR, Cooper J et al (2002) Inhibition of autophagy in mitotic animal cells. Traffic 3:878–893. https://doi.org/10.1034/j.1600-0854.2002.31204.x
doi: 10.1034/j.1600-0854.2002.31204.x
pubmed: 12453151
Li Z, Ji X, Wang D et al (2016) Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle. Oncotarget 12:1–3. https://doi.org/10.18632/oncotarget.9451
doi: 10.18632/oncotarget.9451
Odle RI, Walker SA, Oxley D et al (2019) An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis. Mol Cell 77:1–13. https://doi.org/10.1016/j.molcel.2019.10.016
doi: 10.1016/j.molcel.2019.10.016
Willson J (2020) Mitosis flips the switch on autophagy control. Nat Rev Mol Cell Biol 21:4–5. https://doi.org/10.1038/s41580-019-0196-1
doi: 10.1038/s41580-019-0196-1
pubmed: 31758162
Li Z, Tian X, Ji X et al (2020) ULK1-ATG13 and their mitotic phospho-regulation by CDK1 connect autophagy to cell cycle. PLoS Biol 18:1–29. https://doi.org/10.1371/journal.pbio.3000288
doi: 10.1371/journal.pbio.3000288
Holdgaard SG, Cianfanelli V, Pupo E et al (2019) Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites. Nat Commun 10:1–19. https://doi.org/10.1038/s41467-019-12094-9
doi: 10.1038/s41467-019-12094-9
Holdgaard SG, Cianfanelli V, Cecconi F (2019) Cloud hunting: doryphagy, a form of selective macroautophagy that degrades centriolar satellites. Autophagy. https://doi.org/10.1080/15548627.2019.1703356
doi: 10.1080/15548627.2019.1703356
pubmed: 31847687
pmcid: 6984448
Liu L, XIe R, Nguyen S et al (2009) Robust autophagy/mitophagy persists during mitosis Leyuan. Cell Cycle 8:1616–1620. https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations
doi: 10.1016/j.pestbp.2011.02.012.Investigations
pubmed: 19411827
Loukil A, Zonca M, Rebouissou C et al (2014) High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy. J Cell Sci 127:2145–2150. https://doi.org/10.1242/jcs.139188
doi: 10.1242/jcs.139188
pubmed: 24634511
Linares JF, Amanchy R, Greis K et al (2011) Phosphorylation of p62 by cdk1 controls the timely transit of cells through mitosis and tumor cell proliferation. Mol Cell Biol 31:105–117. https://doi.org/10.1128/MCB.00620-10
doi: 10.1128/MCB.00620-10
pubmed: 20974803
Frémont S, Gérard A, Galloux M et al (2013) Beclin-1 is required for chromosome congression and proper outer kinetochore assembly. EMBO Rep 14:364–372. https://doi.org/10.1038/embor.2013.23
doi: 10.1038/embor.2013.23
pubmed: 23478334
pmcid: 3615652
Maskey D, Yousefi S, Schmid I et al (2013) ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 4:1–14. https://doi.org/10.1038/ncomms3130
doi: 10.1038/ncomms3130
Woodard GE, Huang N-N, Cho H et al (2010) Ric-8A and Giα recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol Cell Biol 30:3519–3530. https://doi.org/10.1128/mcb.00394-10
doi: 10.1128/mcb.00394-10
pubmed: 20479129
pmcid: 2897540
Couwenbergs C, Labbé JC, Goulding M et al (2007) Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans. J Cell Biol 179:15–22. https://doi.org/10.1083/jcb.200707085
doi: 10.1083/jcb.200707085
pubmed: 17908918
pmcid: 2064726
Nguyen-Ngoc T, Afshar K, Gönczy P (2007) Coupling of cortical dynein and Gα proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 9:1294–1302. https://doi.org/10.1038/ncb1649
doi: 10.1038/ncb1649
pubmed: 17922003
Keshri R, Rajeevan A, Kotak S (2020) PP2A–B55γ counteracts Cdk1 and regulates proper spindle orientation through the cortical dynein adaptor NuMA. J Cell Sci. https://doi.org/10.1242/jcs.243857
doi: 10.1242/jcs.243857
pubmed: 32591484
pmcid: 7406356
Giráldez S, Galindo-Moreno M, Limón-Mortés MC et al (2017) G1/S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis. FASEB J 31:2925–2936. https://doi.org/10.1096/fj.201601108R
doi: 10.1096/fj.201601108R
pubmed: 28360195
de Cárcer G, Venkateswaran SV, Salgueiro L et al (2018) Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun. https://doi.org/10.1038/s41467-018-05429-5
doi: 10.1038/s41467-018-05429-5
pubmed: 30069007
pmcid: 6070485
Quintyne NJ, Reing JE, Hoffelder DR et al (2005) Spindle multipolarity is prevented by centrosomal clustering. Science (80–) 307:127–129. https://doi.org/10.1126/science.1104905
doi: 10.1126/science.1104905
Bergstralh DT, St Johnston D (2014) Spindle orientation: What if it goes wrong? Semin Cell Dev Biol 34:140–145. https://doi.org/10.1016/j.semcdb.2014.06.014
doi: 10.1016/j.semcdb.2014.06.014
pubmed: 24972323
pmcid: 4169663
Bergstralh DT, Dawney NS, St Johnston D (2017) Spindle orientation: a question of complex positioning. Development 144:1137–1145. https://doi.org/10.1242/dev.140764
doi: 10.1242/dev.140764
pubmed: 28351864
Sander JD, Zaback P, Joung JK et al (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35:599–605. https://doi.org/10.1093/nar/gkm349
doi: 10.1093/nar/gkm349
Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475. https://doi.org/10.1093/bioinformatics/btu048
doi: 10.1093/bioinformatics/btu048
pubmed: 24463181
pmcid: 4016707
Zhou Y, Liu Y, Hussmann D et al (2016) Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci 73:2543–2563. https://doi.org/10.1007/s00018-015-2128-3
doi: 10.1007/s00018-015-2128-3
pubmed: 26755436
Schorl C, Sedivy JM (2007) Analysis of cell cycle phases and progression in cultured mammalian cells. Methods 41:143–150. https://doi.org/10.1016/j.ymeth.2006.07.022
doi: 10.1016/j.ymeth.2006.07.022
pubmed: 17189856
pmcid: 1828876
Wiśniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–363. https://doi.org/10.1038/nmeth.1322
doi: 10.1038/nmeth.1322
pubmed: 19377485
Zarei M, Sprenger A, Gretzmeier C, Dengjel J (2013) Rapid combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis. J Proteome Res 12:5989–5995. https://doi.org/10.1021/pr4007969
doi: 10.1021/pr4007969
pubmed: 24144214
Asteriti IA, Di Cesare E, De Mattia F et al (2014) The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy. Oncotarget 5:6229–6242. https://doi.org/10.18632/oncotarget.2190
doi: 10.18632/oncotarget.2190
pubmed: 25153724
pmcid: 4171625
Liao S, Rajendraprasad G, Wang N et al (2019) Molecular basis of vasohibins-mediated detyrosination and its impact on spindle function and mitosis. Cell Res 29:533–547. https://doi.org/10.1038/s41422-019-0187-y
doi: 10.1038/s41422-019-0187-y
pubmed: 31171830
pmcid: 6796878
Lee BH, Schwager F, Meraldi P, Gotta M (2018) p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. J Cell Biol 217:483–593. https://doi.org/10.1083/jcb.201707050
doi: 10.1083/jcb.201707050
pubmed: 29222185
pmcid: 5800812