Keratin 19 binds and regulates cytoplasmic HNRNPK mRNA targets in triple-negative breast cancer.


Journal

BMC molecular and cell biology
ISSN: 2661-8850
Titre abrégé: BMC Mol Cell Biol
Pays: England
ID NLM: 101741148

Informations de publication

Date de publication:
17 Aug 2023
Historique:
received: 28 12 2022
accepted: 09 08 2023
medline: 21 8 2023
pubmed: 18 8 2023
entrez: 17 8 2023
Statut: epublish

Résumé

Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized. Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO). This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.

Sections du résumé

BACKGROUND BACKGROUND
Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized.
RESULTS RESULTS
Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO).
CONCLUSIONS CONCLUSIONS
This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.

Identifiants

pubmed: 37592256
doi: 10.1186/s12860-023-00488-z
pii: 10.1186/s12860-023-00488-z
pmc: PMC10433649
doi:

Substances chimiques

RNA, Messenger 0
Heterogeneous-Nuclear Ribonucleoprotein K 0
Keratin-19 0
3' Untranslated Regions 0
HNRNPK protein, human 146410-60-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26

Subventions

Organisme : NIAMS NIH HHS
ID : R01 AR044232
Pays : United States
Organisme : NCI NIH HHS
ID : R15 CA213071
Pays : United States
Organisme : NCI NIH HHS
ID : R15CA213071
Pays : United States

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

J Biol Chem. 2013 May 24;288(21):15046-56
pubmed: 23564449
Nat Cell Biol. 2001 Mar;3(3):325-30
pubmed: 11231586
J Cell Sci. 2005 May 15;118(Pt 10):2303-11
pubmed: 15870111
Nat Protoc. 2012 Mar 01;7(3):562-78
pubmed: 22383036
Genome Biol. 2011 Aug 18;12(8):R79
pubmed: 21851591
Nat Commun. 2020 Jul 29;11(1):3696
pubmed: 32728046
Nat Commun. 2018 Jun 19;9(1):2407
pubmed: 29921878
Mol Cell Biol. 1992 Jan;12(1):164-71
pubmed: 1729596
Cell. 2010 Apr 2;141(1):129-41
pubmed: 20371350
Br J Cancer. 2009 May 19;100(10):1608-16
pubmed: 19401687
eNeuro. 2017 Dec 12;4(6):
pubmed: 29255796
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8
pubmed: 19458158
Nat Cell Biol. 2010 Oct;12(10):1014-20
pubmed: 20818387
Oncogene. 2017 Jan 19;36(3):332-349
pubmed: 27345400
J Biol Chem. 2004 Nov 26;279(48):49680-8
pubmed: 15364910
Nature. 2020 Jul;583(7818):711-719
pubmed: 32728246
Bioessays. 2004 Jun;26(6):629-38
pubmed: 15170860
Clin Cancer Res. 2013 Aug 15;19(16):4335-46
pubmed: 23833298
J Biol Chem. 2001 May 18;276(20):17484-96
pubmed: 11278705
Mol Cell Biol. 2002 Jul;22(13):4535-43
pubmed: 12052863
PLoS Genet. 2015 Jan 22;11(1):e1004933
pubmed: 25611934
Cells. 2019 May 23;8(5):
pubmed: 31126068
Nat Commun. 2013;4:2667
pubmed: 24157709
J Cell Biol. 2015 Mar 2;208(5):613-27
pubmed: 25713416
Cell Cycle. 2016 Jun 17;15(12):1552-7
pubmed: 27049467
Curr Opin Cell Biol. 2013 Feb;25(1):47-56
pubmed: 23270662
EMBO J. 1997 Jun 16;16(12):3587-98
pubmed: 9218800
RNA Biol. 2020 Oct;17(10):1402-1415
pubmed: 32449427
Cell Death Differ. 2015 Apr;22(4):665-76
pubmed: 25342465
Nucleic Acids Res. 2021 May 7;49(8):e45
pubmed: 33503264
Dev Cell. 2016 Aug 8;38(3):227-33
pubmed: 27505414
Development. 2011 Jul;138(14):3079-90
pubmed: 21693523
Cytometry A. 2020 Nov;97(11):1145-1155
pubmed: 32286727
Sci Rep. 2019 Oct 10;9(1):14650
pubmed: 31601969
Oncogene. 2011 Jan 13;30(2):127-38
pubmed: 20890307
Cell Adh Migr. 2021 Dec;15(1):1-17
pubmed: 33393839
J Biol Chem. 2005 Nov 18;280(46):38823-30
pubmed: 16186123
Dev Growth Differ. 2008 Jan;50(1):23-40
pubmed: 18042150
Mol Biol Cell. 2021 Nov 1;32(21):ar21
pubmed: 34406791
Cancer Lett. 2014 Oct 1;352(2):152-9
pubmed: 25016060
Br J Cancer. 2006 Oct 9;95(7):921-7
pubmed: 16953238
Nature. 2006 May 18;441(7091):362-5
pubmed: 16710422
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Mol Cell Biol. 2005 Aug;25(15):6436-53
pubmed: 16024782
Cell. 2005 Dec 16;123(6):1065-78
pubmed: 16360036
J Cell Physiol. 2020 Mar;235(3):1995-2008
pubmed: 31538344

Auteurs

Arwa Fallatah (A)

Department of Biology, The Catholic University of America, Washington, DC, United States of America.
RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.

Dimitrios G Anastasakis (DG)

RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.

Amirhossein Manzourolajdad (A)

RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.
Department of Computer Science, Colgate University, Hamilton, NY, United States of America.

Pooja Sharma (P)

Department of Biology, The Catholic University of America, Washington, DC, United States of America.

Xiantao Wang (X)

RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.

Alexis Jacob (A)

RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.

Sarah Alsharif (S)

Department of Biology, The Catholic University of America, Washington, DC, United States of America.

Ahmed Elgerbi (A)

Department of Biology, The Catholic University of America, Washington, DC, United States of America.

Pierre A Coulombe (PA)

Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America.
Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States of America.

Markus Hafner (M)

RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America. markus.hafner@nih.gov.

Byung Min Chung (BM)

Department of Biology, The Catholic University of America, Washington, DC, United States of America. chung@cua.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH