Soluble CX3CL1-expressing retinal pigment epithelium cells protect rod photoreceptors in a mouse model of retinitis pigmentosa.
Cell therapy
Gene therapy
Microglia activation
Retinal degeneration
Retinitis pigmentosa
Journal
Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581
Informations de publication
Date de publication:
21 08 2023
21 08 2023
Historique:
received:
31
01
2023
accepted:
26
07
2023
medline:
23
8
2023
pubmed:
22
8
2023
entrez:
22
8
2023
Statut:
epublish
Résumé
Retinitis pigmentosa (RP) is an inherited retinal disease that results in photoreceptor degeneration, leading to severe vision loss or blindness. Due to its genetic heterogeneity, developing a new gene therapy to correct every genetic mutation contributing to its progression is infeasible. Photoreceptor transplantation can be harnessed to restore vision; however, this approach is limited by poor cell survival and synaptic integration into the neural retina. Thus, we developed a combined cell and gene therapy that is expected to protect photoreceptors in most, if not all, cases of RP. Human embryonic stem cells (hESCs) modified with our FailSafe™ system were genetically engineered to overexpress sCX3CL1, an inhibitor of microglia activation that has been shown to preserve photoreceptor survival and function in mouse models of RP, independent of the genetic cause. These cells were differentiated into human retinal pigment epithelium (hRPE) cells and used as therapeutic cells due to their longevity and safety, both of which have been demonstrated in preclinical and clinical studies. Transgenic hRPE were delivered into the subretinal space of immunodeficient mice and the rd10 mouse model of RP to evaluate donor cell survival and retention of transgene expression. The outer nuclear layer was quantified to assess photoreceptor protection. Transgenic FailSafe™ hRPE (FS-hRPE) cells can survive for at least four months in the retina of immunodeficient mice and retain transgene expression. However, these cells do not persist beyond two weeks post-injection in the retina of immunocompetent rd10 recipients, despite Cyclosporine A treatment. Nevertheless, sCX3CL1-expressing FailSafe™ hRPE cells prevented photoreceptor degeneration in a local acting manner during the duration of their presence in the subretinal space. Transgenic hESCs differentiate into hRPE cells and retain sCX3CL1 transgene expression both in vitro and in vivo. Moreover, hRPE cells delivered to the subretinal space of rd10 mice prevented photoreceptor degeneration in a local-acting manner, suggesting that this approach could have applications for preserving photoreceptors in specific subregions of the retina, such as the macula. Overall, our study not only reveals the potential of a combined cell and gene therapy for the treatment of RP, but also the possibility of using hRPE cells to deliver therapeutic biologics in situ to treat diseases over long-term.
Sections du résumé
BACKGROUND
Retinitis pigmentosa (RP) is an inherited retinal disease that results in photoreceptor degeneration, leading to severe vision loss or blindness. Due to its genetic heterogeneity, developing a new gene therapy to correct every genetic mutation contributing to its progression is infeasible. Photoreceptor transplantation can be harnessed to restore vision; however, this approach is limited by poor cell survival and synaptic integration into the neural retina. Thus, we developed a combined cell and gene therapy that is expected to protect photoreceptors in most, if not all, cases of RP.
METHODS
Human embryonic stem cells (hESCs) modified with our FailSafe™ system were genetically engineered to overexpress sCX3CL1, an inhibitor of microglia activation that has been shown to preserve photoreceptor survival and function in mouse models of RP, independent of the genetic cause. These cells were differentiated into human retinal pigment epithelium (hRPE) cells and used as therapeutic cells due to their longevity and safety, both of which have been demonstrated in preclinical and clinical studies. Transgenic hRPE were delivered into the subretinal space of immunodeficient mice and the rd10 mouse model of RP to evaluate donor cell survival and retention of transgene expression. The outer nuclear layer was quantified to assess photoreceptor protection.
RESULTS
Transgenic FailSafe™ hRPE (FS-hRPE) cells can survive for at least four months in the retina of immunodeficient mice and retain transgene expression. However, these cells do not persist beyond two weeks post-injection in the retina of immunocompetent rd10 recipients, despite Cyclosporine A treatment. Nevertheless, sCX3CL1-expressing FailSafe™ hRPE cells prevented photoreceptor degeneration in a local acting manner during the duration of their presence in the subretinal space.
CONCLUSIONS
Transgenic hESCs differentiate into hRPE cells and retain sCX3CL1 transgene expression both in vitro and in vivo. Moreover, hRPE cells delivered to the subretinal space of rd10 mice prevented photoreceptor degeneration in a local-acting manner, suggesting that this approach could have applications for preserving photoreceptors in specific subregions of the retina, such as the macula. Overall, our study not only reveals the potential of a combined cell and gene therapy for the treatment of RP, but also the possibility of using hRPE cells to deliver therapeutic biologics in situ to treat diseases over long-term.
Identifiants
pubmed: 37605279
doi: 10.1186/s13287-023-03434-0
pii: 10.1186/s13287-023-03434-0
pmc: PMC10441732
doi:
Substances chimiques
CX3CL1 protein, human
0
Chemokine CX3CL1
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
212Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1(1):40.
pubmed: 17032466
pmcid: 1621055
doi: 10.1186/1750-1172-1-40
Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. The Lancet. 2006;368(9549):1795–809.
doi: 10.1016/S0140-6736(06)69740-7
Gao J, Hussain RM, Weng CY. Voretigene neparvovec in retinal diseases: a review of the current clinical evidence. Clin Ophthalmol. 2020;13(14):3855–69.
doi: 10.2147/OPTH.S231804
Prado DA, Acosta-Acero M, Maldonado RS. Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease. Curr Opin Ophthalmol. 2020;31(3):147–54.
pubmed: 32175942
doi: 10.1097/ICU.0000000000000660
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al. Gene therapy leaves a vicious cycle. Front Oncol. 2019;24(9):297.
doi: 10.3389/fonc.2019.00297
Mullard A. Gene therapy community grapples with toxicity issues, as pipeline matures. Nat Rev Drug Discovery. 2021;20(11):804–5.
pubmed: 34599291
doi: 10.1038/d41573-021-00164-x
Papanikolaou E, Bosio A. The Promise and the Hope of Gene Therapy. Front Genome Edit. 2021. https://doi.org/10.3389/fgeed.2021.618346 .
doi: 10.3389/fgeed.2021.618346
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.
pubmed: 12728277
doi: 10.1038/nrg1066
Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021;39(1):47–55.
pubmed: 33199875
doi: 10.1038/s41587-020-0741-7
Harding J, Vintersten-Nagy K, Nagy A. Universal stem cells: making the unsafe safe. Cell Stem Cell. 2020;27(2):198–9.
pubmed: 32763181
doi: 10.1016/j.stem.2020.07.004
Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15(1):36–45.
pubmed: 29333086
pmcid: 5765738
doi: 10.7150/ijms.21666
Barber AC, Hippert C, Duran Y, West EL, Bainbridge JWB, Warre-Cornish K, et al. Repair of the degenerate retina by photoreceptor transplantation. PNAS. 2013;110(1):354–9.
pubmed: 23248312
doi: 10.1073/pnas.1212677110
MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444(7116):203–7.
pubmed: 17093405
doi: 10.1038/nature05161
Decembrini S, Martin C, Sennlaub F, Chemtob S, Biel M, Samardzija M, et al. Cone genesis tracing by the Chrnb4-EGFP mouse line: evidences of cellular material fusion after cone precursor transplantation. Mol Ther. 2017;25(3):634–53.
pubmed: 28143742
pmcid: 5363218
doi: 10.1016/j.ymthe.2016.12.015
Ortin-Martinez A, Tsai ELS, Nickerson PE, Bergeret M, Lu Y, Smiley S, et al. A reinterpretation of cell transplantation: GFP transfer from donor to host photoreceptors. Stem Cells. 2017;35(4):932–9.
pubmed: 27977075
doi: 10.1002/stem.2552
Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, Goh D, et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun. 2016;7(1):13029.
pubmed: 27701378
pmcid: 5059468
doi: 10.1038/ncomms13029
Waldron PV, Di Marco F, Kruczek K, Ribeiro J, Graca AB, Hippert C, et al. Transplanted donor- or stem cell-derived cone photoreceptors can both integrate and undergo material transfer in an environment-dependent manner. Stem Cell Rep. 2018;10(2):406–21.
doi: 10.1016/j.stemcr.2017.12.008
Kalargyrou AA, Basche M, Hare A, West EL, Smith AJ, Ali RR, et al. Nanotube-like processes facilitate material transfer between photoreceptors. EMBO Rep. 2021;22(11): e53732.
pubmed: 34494703
pmcid: 8567251
doi: 10.15252/embr.202153732
Ortin-Martinez A, Yan NE, Tsai ELS, Comanita L, Gurdita A, Tachibana N, et al. Photoreceptor nanotubes mediate the in vivo exchange of intracellular material. EMBO J. 2021;40(22): e107264.
pubmed: 34494680
pmcid: 8591540
doi: 10.15252/embj.2020107264
Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res. 2019;69:1–37.
pubmed: 30445193
doi: 10.1016/j.preteyeres.2018.11.001
Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res. 2015;14(3):243–57.
pubmed: 25752437
pmcid: 4434205
doi: 10.1016/j.scr.2015.02.003
West EL, Pearson RA, MacLaren RE, Sowden JC, Ali RR. Cell transplantation strategies for retinal repair. Prog Brain Res. 2009;175:3–21.
pubmed: 19660645
pmcid: 3272389
doi: 10.1016/S0079-6123(09)17501-5
Gasparini SJ, Tessmer K, Reh M, Wieneke S, Carido M, Völkner M, et al. Transplanted human cones incorporate into the retina and function in a murine cone degeneration model. J Clin Invest. 2022;132(12): e154619.
pubmed: 35482419
pmcid: 9197520
doi: 10.1172/JCI154619
Ripolles-Garcia A, Dolgova N, Phillips MJ, Savina S, Ludwig AL, Stuedemann SA, et al. Systemic immunosuppression promotes survival and integration of subretinally implanted human ESC-derived photoreceptor precursors in dogs. Stem Cell Reports. 2022;17(8):1824–41.
pubmed: 35905738
pmcid: 9391525
doi: 10.1016/j.stemcr.2022.06.009
Zerti D, Hilgen G, Dorgau B, Collin J, Ader M, Armstrong L, et al. Transplanted pluripotent stem cell-derived photoreceptor precursors elicit conventional and unusual light responses in mice with advanced retinal degeneration. Stem Cells. 2021;39(7):882–96.
pubmed: 33657251
doi: 10.1002/stem.3365
Aït-Ali N, Fridlich R, Millet-Puel G, Clérin E, Delalande F, Jaillard C, et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell. 2015;161(4):817–32.
pubmed: 25957687
doi: 10.1016/j.cell.2015.03.023
Appelbaum T, Santana E, Aguirre GD. Strong upregulation of inflammatory genes accompanies photoreceptor demise in canine models of retinal degeneration. PLoS ONE. 2017;12(5): e0177224.
pubmed: 28486508
pmcid: 5423635
doi: 10.1371/journal.pone.0177224
Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res. 2003;76(4):463–71.
pubmed: 12634111
doi: 10.1016/S0014-4835(02)00332-9
de Kozak Y, Cotinet A, Goureau O, Hicks D, Thillaye-goldenberg B. Tumor necrosis factor and nitric oxide production by resident retinal glial cells from rats presenting hereditary retinal degeneration. Ocul Immunol Inflamm. 1997;5(2):85–94.
pubmed: 9234372
doi: 10.3109/09273949709085056
Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci. 2009;12(1):44–52.
pubmed: 19060896
doi: 10.1038/nn.2234
Ulshafer RJ, Sherry DM, Dawson R, Wallace DR. Excitatory amino acid involvement in retinal degeneration. Brain Res. 1990;531(1):350–4.
pubmed: 1981164
doi: 10.1016/0006-8993(90)90800-Q
Usui S, Komeima K, Lee SY, Jo YJ, Ueno S, Rogers BS, et al. Increased expression of catalase and superoxide dismutase 2 reduces cone cell death in retinitis pigmentosa. Mol Ther. 2009;17(5):778–86.
pubmed: 19293779
pmcid: 2803613
doi: 10.1038/mt.2009.47
Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, et al. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med. 2015;7(9):1179–97.
pubmed: 26139610
pmcid: 4568951
doi: 10.15252/emmm.201505298
Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, et al. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia. 2016;64(9):1479–91.
pubmed: 27314452
pmcid: 4958518
doi: 10.1002/glia.23016
Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E, et al. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci. 2011;31(45):16327–35.
pubmed: 22072684
pmcid: 6633249
doi: 10.1523/JNEUROSCI.3611-11.2011
Nash KR, Moran P, Finneran DJ, Hudson C, Robinson J, Morgan D, et al. Fractalkine over expression suppresses α-synuclein-mediated neurodegeneration. Mol Ther. 2015;23(1):17–23.
pubmed: 25195598
doi: 10.1038/mt.2014.175
Pabon MM, Bachstetter AD, Hudson CE, Gemma C, Bickford PC. CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflammation. 2011;25(8):9.
doi: 10.1186/1742-2094-8-9
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in retinal degeneration. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.01975/full .
doi: 10.3389/fimmu.2019.01975/full
pubmed: 31552025
pmcid: 6736987
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia—A key player in healthy and diseased retina. Prog Neurobiol. 2019;1(173):18–40.
doi: 10.1016/j.pneurobio.2018.05.006
Murakami Y, Ikeda Y, Nakatake S, Miller JW, Vavvas DG, Sonoda KH, et al. Necrotic cone photoreceptor cell death in retinitis pigmentosa. Cell Death Dis. 2015;6(12):e2038–e2038.
pubmed: 26720347
pmcid: 4720913
doi: 10.1038/cddis.2015.385
Blank T, Goldmann T, Koch M, Amann L, Schön C, Bonin M, et al. Early microglia activation precedes photoreceptor degeneration in a mouse model of CNGB1-linked retinitis pigmentosa. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2017.01930/full .
doi: 10.3389/fimmu.2017.01930/full
pubmed: 30515167
pmcid: 6255985
Shima C, Sakaguchi H, Gomi F, Kamei M, Ikuno Y, Oshima Y, et al. Complications in patients after intravitreal injection of bevacizumab. Acta Ophthalmol. 2008;86(4):372–6.
pubmed: 18028234
doi: 10.1111/j.1600-0420.2007.01067.x
Thompson JT. Cataract formation and other complications of intravitreal triamcinolone for macular edema. Am J Ophthalmol. 2006;141(4):629-629.e10.
pubmed: 16564796
doi: 10.1016/j.ajo.2005.11.050
Liang Q, Monetti C, Shutova MV, Neely EJ, Hacibekiroglu S, Yang H, et al. Linking a cell-division gene and a suicide gene to define and improve cell therapy safety. Nature. 2018;563(7733):701–4.
pubmed: 30429614
doi: 10.1038/s41586-018-0733-7
Chen P, Zhao W, Guo Y, Xu J, Yin M. CX3CL1/CX3CR1 in Alzheimer’s disease: a target for neuroprotection. Biomed Res Int. 2016;2016:8090918.
pubmed: 27429982
pmcid: 4939332
Huang L, Xu W, Xu G. Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration. Ocul Immunol Inflamm. 2013;21(4):276–85.
pubmed: 23718544
doi: 10.3109/09273948.2013.791925
Lauro C, Chece G, Monaco L, Antonangeli F, Peruzzi G, Rinaldo S, et al. Fractalkine Modulates Microglia Metabolism in Brain Ischemia. Front Cell Neurosci. 2019. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755341/ .
Roche SL, Wyse-Jackson AC, Ruiz-Lopez AM, Byrne AM, Cotter TG. Fractalkine-CX3CR1 signaling is critical for progesterone-mediated neuroprotection in the retina. Sci Rep. 2017;7(1):43067.
pubmed: 28216676
pmcid: 5316933
doi: 10.1038/srep43067
Wang SK, Xue Y, Rana P, Hong CM, Cepko CL. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa. PNAS. 2019;116(20):10140–9.
pubmed: 31036641
pmcid: 6525490
doi: 10.1073/pnas.1901787116
Chang B, Hawes NL, Pardue MT, German AM, Hurd RE, Davisson MT, et al. Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vision Res. 2007;47(5):624–33.
pubmed: 17267005
pmcid: 2562796
doi: 10.1016/j.visres.2006.11.020
Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza DR. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6(3):42.
doi: 10.1089/clo.2004.6.217
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11(475):eaat5580.
pubmed: 30651323
pmcid: 8784963
doi: 10.1126/scitranslmed.aat5580
Lutty GA, McLeod DS. Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye. Prog Retin Eye Res. 2018;62:58–76.
pubmed: 29081352
doi: 10.1016/j.preteyeres.2017.10.001
Stern J, Temple S. Retinal pigment epithelial cell proliferation. Exp Biol Med. 2015;240(8):1079–86.
doi: 10.1177/1535370215587530
da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328–37.
pubmed: 29553577
doi: 10.1038/nbt.4114
Sun J, Mandai M, Kamao H, Hashiguchi T, Shikamura M, Kawamata S, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice. Stem Cells. 2015;33(5):1543–53.
pubmed: 25728228
doi: 10.1002/stem.1960
Zhu D, Xie M, Gademann F, Cao J, Wang P, Guo Y, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Res Ther. 2020;11(1):98.
pubmed: 32131893
pmcid: 7055119
doi: 10.1186/s13287-020-01608-8
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46.
pubmed: 28296613
doi: 10.1056/NEJMoa1608368
Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765–75.
pubmed: 29884405
doi: 10.1016/j.ophtha.2018.04.037
Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20.
pubmed: 22281388
doi: 10.1016/S0140-6736(12)60028-2
Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. The Lancet. 2015;385(9967):509–16.
doi: 10.1016/S0140-6736(14)61376-3
Ballios BG, Cooke MJ, van der Kooy D, Shoichet MS. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials. 2010;31(9):2555–64.
pubmed: 20056272
doi: 10.1016/j.biomaterials.2009.12.004
Mitrousis N, Hacibekiroglu S, Ho MT, Sauvé Y, Nagy A, van der Kooy D, et al. Hydrogel-mediated co-transplantation of retinal pigmented epithelium and photoreceptors restores vision in an animal model of advanced retinal degeneration. Biomaterials. 2020;1(257): 120233.
doi: 10.1016/j.biomaterials.2020.120233
Samardzija M, Wariwoda H, Imsand C, Huber P, Heynen SR, Gubler A, et al. Activation of survival pathways in the degenerating retina of rd10 mice. Exp Eye Res. 2012;99:17–26.
pubmed: 22546314
doi: 10.1016/j.exer.2012.04.004
Zieger M, Ahnelt PK, Uhrin P. CX3CL1 (Fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies. PLoS One. 2014;9(9): e106562.
pubmed: 25191897
pmcid: 4156323
doi: 10.1371/journal.pone.0106562
Payne SL, Tuladhar A, Obermeyer JM, Varga BV, Teal CJ, Morshead CM, et al. Initial cell maturity changes following transplantation in a hyaluronan-based hydrogel and impacts therapeutic success in the stroke-injured rodent brain. Biomaterials. 2019;1(192):309–22.
doi: 10.1016/j.biomaterials.2018.11.020
Tarozzo G, Campanella M, Ghiani M, Bulfone A, Beltramo M. Expression of fractalkine and its receptor, CX
pubmed: 12059974
doi: 10.1046/j.1460-9568.2002.02007.x
Zhang Y, Zheng J, Zhou Z, Zhou H, Wang Y, Gong Z, et al. Fractalkine promotes chemotaxis of bone marrow-derived mesenchymal stem cells towards ischemic brain lesions through Jak2 signaling and cytoskeletal reorganization. FEBS J. 2015;282(5):891–903.
pubmed: 25559502
doi: 10.1111/febs.13187
Mizuno T, Kawanokuchi J, Numata K, Suzumura A. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res. 2003;979(1):65–70.
pubmed: 12850572
doi: 10.1016/S0006-8993(03)02867-1
Zujovic V, Benavides J, Vigé X, Carter C, Taupin V. Fractalkine modulates TNF-α secretion and neurotoxicity induced by microglial activation. Glia. 2000;29(4):305–15.
pubmed: 10652441
doi: 10.1002/(SICI)1098-1136(20000215)29:4<305::AID-GLIA2>3.0.CO;2-V
Jobling AI, Waugh M, Vessey KA, Phipps JA, Trogrlic L, Greferath U, et al. The role of the microglial Cx3cr1 pathway in the postnatal maturation of retinal photoreceptors. J Neurosci. 2018;38(20):4708–23.
pubmed: 29669747
pmcid: 6596015
doi: 10.1523/JNEUROSCI.2368-17.2018
Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, et al. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci. 2016;36(9):2827–42.
pubmed: 26937019
pmcid: 4879218
doi: 10.1523/JNEUROSCI.3575-15.2016
Xiong W, Wu DM, Xue Y, Wang SK, Chung MJ, Ji X, et al. AAV cis-regulatory sequences are correlated with ocular toxicity. Proc Natl Acad Sci. 2019;116(12):5785–94.
pubmed: 30833387
pmcid: 6431174
doi: 10.1073/pnas.1821000116
Endo Y, Shoji N, Shimada Y, Kasahara E, Iikubo M, Sato T, et al. Prednisolone induces microglial activation in the subnucleus caudalis of the rat trigeminal sensory complex. Cell Mol Neurobiol. 2014;34(1):95–100.
pubmed: 24077857
doi: 10.1007/s10571-013-9990-z
Sarra GM, Sarra FG, Schlichtenbrede FC, Trittibach P, Estermann S, Tsiroukis E, et al. Effect of steroidal and non-steroidal drugs on the microglia activation pattern and the course of degeneration in the retinal degeneration slow mouse. ORE. 2005;37(2):72–82.
Sugama S, Takenouchi T, Fujita M, Kitani H, Conti B, Hashimoto M. Corticosteroids limit microglial activation occurring during acute stress. Neuroscience. 2013;1(232):13–20.
doi: 10.1016/j.neuroscience.2012.12.012
Gregory-Evans K, Chang F, Hodges MD, Gregory-Evans CY. Ex vivo gene therapy using intravitreal injection of GDNF-secreting mouse embryonic stem cells in a rat model of retinal degeneration. Mol Vis. 2009;13(15):962–73.