AhR may be involved in Th17 cell differentiation in chronic hepatitis B.
Th17 cell differentiation
aryl hydrocarbon receptor
bioinformatics analysis
chronic hepatitis B
immunopathogenesis
Journal
Journal of viral hepatitis
ISSN: 1365-2893
Titre abrégé: J Viral Hepat
Pays: England
ID NLM: 9435672
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
19
07
2023
received:
16
05
2023
accepted:
09
08
2023
medline:
17
11
2023
pubmed:
23
8
2023
entrez:
23
8
2023
Statut:
ppublish
Résumé
Th17 cells which are crucial for host immunity have been demonstrated to increase HBV infection. However, the mechanism of the Th17 cell increase is unknown. Hence, the mechanism of Th17 cell enhancement is important to provide a theoretical foundation for chronic hepatitis B immunotherapy. This study included 15 instances in the healthy control (HC) and 15 cohorts in the chronic hepatitis B (CHB). Their CD4
Substances chimiques
AHR protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
939-950Subventions
Organisme : National Natural Science Foundation of China
Organisme : Yunnan Provincial Department of Education Science Research Fund Project
Informations de copyright
© 2023 The Authors. Journal of Viral Hepatitis published by John Wiley & Sons Ltd.
Références
Khanam A, Chua J, Kottilil S. Immunopathology of chronic hepatitis B infection: role of innate and adaptive immune response in disease progression. Int J Mol Sci. 2021;22(11):5497-5518. doi:10.3390/ijms22115497
Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis B infection associated liver disease: a review. World J Gastroenterol. 2019;25(27):3527-3537. doi:10.3748/wjg.v25.i27.3527
Buschow SI, Jansen D. CD4(+) T cells in chronic hepatitis B and T cell-directed immunotherapy. Cell. 2021;10(5):1114. doi:10.3390/cells10051114
Paquissi FC. Immunity and fibrogenesis: the role of Th17/IL-17 Axis in HBV and HCV-induced chronic hepatitis and progression to cirrhosis. Front Immunol. 2017;8:1195.
Feng H, Yin J, Han YP, et al. Regulatory T cells and IL-17(+) T helper cells enhanced in patients with chronic hepatitis B virus infection. Int J Clin Exp Med. 2015;8(6):8674-8685.
Zhang H, Jiang Z, Zhang L. Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: from occurrence to end stage of disease. Int Immunopharmacol. 2019;69:50-59. doi:10.1016/j.intimp.2019.01.005
Huaie L, You J, Chen HY, et al. Influence of the balance of Th17/Treg in the Progress of hepatitis B virus related liver disease. Chin Gen Pract. 2016;19(18):2121-2125.
Huaie L, You J, Min H, et al. Study on the role of the balance Th17/Treg in the development of hepatitis B virus-related liver fibrosis. Chin Gen Pract. 2016;19(18):2126-2129.
Liu B, Gao W, Zhang L, et al. Th17/Treg imbalance and increased interleukin-21 are associated with liver injury in patients with chronic severe hepatitis B. Int Immunopharmacol. 2017;46:48-55. doi:10.1016/j.intimp.2017.02.019
Mou H, Wu S, Zhao G, Wang J. Changes of Th17/Treg ratio in the transition of chronic hepatitis B to liver cirrhosis and correlations with liver function and inflammation. Exp Ther Med. 2019;17(4):2963-2968. doi:10.3892/etm.2019.7299
Hang LTT, Trinh HKT, An LB, et al. Dysregulation of T cell differentiation and the IL17A(+)Foxp3(+)Treg subset in chronic hepatitis B patients with hepatitis flare. Viral Immunol. 2023;36(2):127-135.
Islam M, Sevak JK, Sharma MK, et al. Immune predictors of hepatitis B surface antigen seroconversion in patients with hepatitis B reactivation. Aliment Pharm Therap. 2023;57(6):689-708.
Ju H, Liu H, Tian ZB, Jiang YP, Zhang CP, Liu XS. Association of polymorphisms in key Th-17 immune response genes with HBeAg-positive chronic hepatitis B susceptibility and response to PEG-IFNa-2α. Virology. 2017;509:35-41.
Wang G, Wang FS, Zhang H. Guide lines for the prevention and treatment of chronic hepatitis B(Version2019). J Clin Hepatol. 2019;35(12):2648-2669.
Kechin A, Boyarskikh U, Kel A, Filipenko M. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J Comput Biol. 2017;24(11):1138-1143.
Li J, Gao F, Wei L, et al. Predict the role of lncRNA in kidney aging based on RNA sequencing. BMC Genomics. 2022;23(1):254.
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290-295.
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and ballgown. Nat Protoc. 2016;11(9):1650-1667.
Xia M, Chen Y-J, Chen B, et al. Knockout of transient receptor potential ankyrin 1 (TRPA1) modulates the glial phenotype and alleviates perihematomal neuroinflammation after intracerebral hemorrhage in mice via MAPK/NF-κB signaling. Neuroreport. 2022;34:81-92. doi:10.1097/wnr.0000000000001862
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20(1):278.
Wang ZY, Leushkin E, Liechti A, et al. Transcriptome and translatome co-evolution in mammals. Nature. 2020;588(7839):642-647.
Sahraeian SME, Mohiyuddin M, Sebra R, et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat Commun. 2017;8(1):59.
Jiang Z, Li R, Tang Y, et al. Transcriptome analysis reveals the inducing effect of Bacillus siamensis on disease resistance in postharvest mango fruit. Foods. 2022;11(1):107.
Consortium GO. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49(D1):D325-d334.
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25-29.
Yu X, Chen Y, Cui L, et al. CXCL8, CXCL9, CXCL10, and CXCL11 as biomarkers of liver injury caused by chronic hepatitis B. Front Microbiol. 2022;13:1052917. doi:10.3389/fmicb.2022.1052917
Khlaiphuengsin A, Chuaypen N, Hirankarn N, et al. Circulating BAFF and CXCL10 levels predict response to pegylated interferon in patients with HBeAg-positive chronic hepatitis B. Asian Pac J Allergy. 2021;39(2):129-135.
Wang J, Lu J, Zhou C, Du L, Tang H. Interferon-related gene array in predicting the efficacy of interferon therapy in chronic hepatitis B. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023;40(1):79-86.
Wang WX, Jia R, Jin XY, et al. Serum cytokine change profile associated with HBsAg loss during combination therapy with PEG-IFN-α in NAs-suppressed chronic hepatitis B patients. Front Immunol. 2023;14:1121778.
van den Boogaard FE, van Gisbergen KP, Vernooy JH, et al. Granzyme a impairs host defense during Streptococcus pneumoniae pneumonia. Am J Physiol-Lung Cell Mol Physiol. 2016;311(2):L507-L516.
Schanoski AS, Le TT, Kaiserman D, et al. Granzyme a in chikungunya and other arboviral infections. Front Immunol. 2019;10:3083.
Gao Y, Xu Q, Li X, et al. Heterogeneity induced GZMA-F2R communication inefficient impairs antitumor immunotherapy of PD-1 mAb through JAK2/STAT1 signal suppression in hepatocellular carcinoma. Cell Death Dis. 2022;13(3):213.
Zeng XC, Zhang L, Liao WJ, et al. Screening and identification of potential biomarkers in hepatitis B virus-related hepatocellular carcinoma by bioinformatics analysis. Front Genet. 2020;11:555537.
Zhang J, Liu X, Zhou W, et al. Identification of key genes associated with the process of hepatitis B inflammation and cancer transformation by integrated bioinformatics analysis. Front Genet. 2021;12:654517.
Zhang P, Feng J, Wu X, Chu W, Zhang Y, Li P. Bioinformatics analysis of candidate genes and pathways related to hepatocellular carcinoma in China: a study based on public databases. Pathol Oncol Res. 2021;27:588532.
Wu MJ, Ke PY, Horng JT. RacGTPase-activating protein 1 interacts with hepatitis C virus polymerase NS5B to regulate viral replication. Biochem Bioph Res co. 2014;454(1):19-24.
Ge J, Wang K, Meng QH, Qi ZX, Meng FL, Fan YC. Implication of Th17 and Th1 cells in patients with chronic active hepatitis B. J Clin Immunol. 2010;30(1):60-67.
Cui D, Jiang D, Yan C, et al. Immune checkpoint molecules expressed on CD4+ T cell subsets in chronic asymptomatic hepatitis B virus carriers with hepatitis B e antigen-negative. Front Microbiol. 2022;13:887408.
Yang B, Wang Y, Zhao C, et al. Increased Th17 cells and interleukin-17 contribute to immune activation and disease aggravation in patients with chronic hepatitis B virus infection. Immunol Lett. 2013;149(1-2):41-49. doi:10.1016/j.imlet.2012.12.001
Gao J, Lin Y, Qiu C, Liu Y, Ma Y, Liu Y. Association between HLA-DQA1, -DQB1 gene polymorphisms and susceptibility to asthma in northern Chinese subjects. Chin Med J. 2003;116(7):1078-1082.
Ji ZH, Ren WZ, Yang S, et al. Identification of immune-related biomarkers associated with tumorigenesis and prognosis in skin cutaneous melanoma. Am J Cancer Res. 2022;12(4):1727-1739.
Karra VK, Chowdhury SJ, Ruttala R, et al. HLA-DQA1 & DQB1 variants associated with hepatitis B virus-related chronic hepatitis, cirrhosis & hepatocellular carcinoma. Indian J Med Res. 2018;147(6):573-580.
Zhu K, Meng Q, Zhang Z, et al. Aryl hydrocarbon receptor pathway: role, regulation and intervention in atherosclerosis therapy (review). Mol Med Rep. 2019;20(6):4763-4773. doi:10.3892/mmr.2019.10748
Bock KW. Aryl hydrocarbon receptor (AHR)-mediated inflammation and resolution: non-genomic and genomic signaling. Biochem Pharmacol. 2020;182:114220. doi:10.1016/j.bcp.2020.114220
Liu X, Hu H, Fan H, et al. The role of STAT3 and AhR in the differentiation of CD4+ T cells into Th17 and Treg cells. Medicine (Baltimore). 2017;96(17):e6615. doi:10.1097/MD.0000000000006615
de Lima KA, Donate PB, Talbot J, et al. TGFβ1 signaling sustains aryl hydrocarbon receptor (AHR) expression and restrains the pathogenic potential of TH17 cells by an AHR-independent mechanism. Cell Death Dis. 2018;9(11):1130.
Liu Y, Zhao N, Xu Q, et al. MBL binding with AhR controls Th17 immunity in silicosis-associated lung inflammation and fibrosis. J Inflamm Res. 2022;15:4315-4329.
Bruno Lamas JMN, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol. 2018;11(4):1024-1038. doi:10.1038/s41385-018-0019-2
Fattahi S, Karimi M, Ghatreh-Samani M, et al. Correlation between aryl hydrocarbon receptor and IL-17+ and Foxp3+ T-cell infiltration in bladder cancer. Int J Exp Pathol. 2021;102(6):249-259.
de Araujo EF, Loures FV, Preite NW, et al. AhR ligands modulate the differentiation of innate lymphoid cells and T helper cell subsets that control the severity of a pulmonary fungal infection. Front Immunol. 2021;12:630938. doi:10.3389/fimmu.2021.630938
Lawrence BP, Vorderstrasse BA. New insights into the aryl hydrocarbon receptor as a modulator of host responses to infection. Semin Immunopathol. 2013;35(6):615-626.
Sun L, Fu J, Lin SH, et al. Particulate matter of 2.5 μm or less in diameter disturbs the balance of TH17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1α in an asthma model. J Allergy Clin Immun. 2020;145(1):402-414.
Xie J, Wang Z, Wang W. Semaphorin 4D induces an imbalance of Th17/Treg cells by activating the aryl hydrocarbon receptor in ankylosing spondylitis. Front Immunol. 2020;11:2151.
Takei H, Yasuoka H, Yoshimoto K, Takeuchi T. Aryl hydrocarbon receptor signals attenuate lung fibrosis in the bleomycin-induced mouse model for pulmonary fibrosis through increase of regulatory T cells. Arthritis Res Ther. 2020;22(1):20.
Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453(7191):65-71. doi:10.1038/nature06880
Li J, Wang FP, She WM, et al. Enhanced high-mobility group box 1 (HMGB1) modulates regulatory T cells (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B. J Viral Hepat. 2014;21(2):129-140. doi:10.1111/jvh.12152
Salminen A. Activation of aryl hydrocarbon receptor (AhR) in Alzheimer's disease: role of tryptophan metabolites generated by gut host-microbiota. J Mol Med. 2023;101(3):201-222.
Li X, Lu C, Fan D, et al. Human umbilical mesenchymal stem cells display therapeutic potential in rheumatoid arthritis by regulating interactions between immunity and gut microbiota via the aryl hydrocarbon receptor. Front Cell Dev Biol. 2020;8:131.
Chen B, Huang H, Pan CQ. The role of gut microbiota in hepatitis B disease progression and treatment. J Viral Hepatitis. 2022;29(2):94-106.
Zhang Y, Zhao R, Shi D, et al. Characterization of the circulating microbiome in acute-on-chronic liver failure associated with hepatitis B. Liver Int. 2019;39(7):1207-1216.
Wrzosek L, Ciocan D, Hugot C, et al. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut. 2021;70(7):1299-1308.
Wang B, Zhou Z, Li L. Gut microbiota regulation of AHR signaling in liver disease. Biomolecules. 2022;12(9):1244. doi:10.3390/biom12091244