Tropical forests are approaching critical temperature thresholds.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
31
08
2021
accepted:
30
06
2023
medline:
8
9
2023
pubmed:
24
8
2023
entrez:
23
8
2023
Statut:
ppublish
Résumé
The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (T
Identifiants
pubmed: 37612501
doi: 10.1038/s41586-023-06391-z
pii: 10.1038/s41586-023-06391-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
105-111Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Slot, M. et al. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant. Cell Environ. 44, 2414–2427 (2021).
doi: 10.1111/pce.14060
pubmed: 33817813
IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Wilson, E. & Raven, P. in Biodiversity (ed. Wilson, E. O.) Ch. 3 (National Academy Press, 1988).
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).
doi: 10.1086/282487
Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).
doi: 10.1038/srep33130
pubmed: 27604976
pmcid: 5015046
Jiménez-Muñoz, J. C., Sobrino, J. A., Mattar, C. & Malhi, Y. Spatial and temporal patterns of the recent warming of the Amazon forest. J. Geophys. Res. Atmos. 118, 5204–5215 (2013).
doi: 10.1002/jgrd.50456
Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. https://doi.org/10.1029/2007JG000632 (2008).
Sachs, J. Über die obere temperaturgränze der vegetation. Flora 47, 5–12 (1864).
Feeley, K. et al. The thermal tolerances, distributions, and performances of tropical montane tree species. Front. For. Glob. Change 3, 25 (2020).
doi: 10.3389/ffgc.2020.00025
Krause, G. H. et al. High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Funct. Plant Biol. 37, 890–900 (2010).
doi: 10.1071/FP10034
O’Sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Glob. Chang. Biol. 23, 209–223 (2017).
doi: 10.1111/gcb.13477
pubmed: 27562605
Still, C. J. et al. Imaging canopy temperature: shedding (thermal) light on ecosystem processes. New Phytol. 230, 1746–1753 (2021).
Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, e2019WR026058 (2020).
doi: 10.1029/2019WR026058
Hulley, G. C. et al. Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product. IEEE Trans. Geosci. Remote Sens. 60, 1–23 (2022).
doi: 10.1109/TGRS.2021.3079879
Fauset, S. et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant. Cell Environ. 41, 1618–1631 (2018).
doi: 10.1111/pce.13208
pubmed: 29603771
pmcid: 6032932
Doughty, C. E. An in situ leaf and branch warming experiment in the Amazon. Biotropica 43, 658–665 (2011).
doi: 10.1111/j.1744-7429.2010.00746.x
Carter, K. R., Wood, T. E., Reed, S. C., Butts, K. M. & Cavaleri, M. A. Experimental warming across a tropical forest canopy height gradient reveals minimal photosynthetic and respiratory acclimation. Plant. Cell Environ. 44, 2879–2897 (2021).
doi: 10.1111/pce.14134
pubmed: 34169547
Rey-Sanchez, A. C., Slot, M., Posada, J. & Kitajima, K. Spatial and seasonal variation of leaf temperature within the canopy of a tropical forest. Clim. Res. 71, 75–89 (2016).
doi: 10.3354/cr01427
Crous, K. Y. et al. Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies. Tree Physiol. tpad054 (2023).
Kivalov, S. N. & Fitzjarrald, D. R. Observing the whole-canopy short-term dynamic response to natural step changes in incident light: characteristics of tropical and temperate forests. Boundary Layer Meteorol. 173, 1–52 (2019).
doi: 10.1007/s10546-019-00460-5
Tiwari, R. et al. Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. Plant. Cell Environ. 44, 2428–2439 (2021).
da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
doi: 10.1038/s41586-021-03629-6
pubmed: 34262208
Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).
Hulley, G. C. & Hook, S. J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for Earth science research. IEEE Trans. Geosci. Remote Sens. 49, 1304–1315 (2011).
doi: 10.1109/TGRS.2010.2063034
Gillespie, A. et al. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36, 1113–1126 (1998).
doi: 10.1109/36.700995
Kitudom, N. et al. Thermal safety margins of plant leaves across biomes under a heatwave. Sci. Total Environ. 806, 150416 (2022).
doi: 10.1016/j.scitotenv.2021.150416
pubmed: 34852425
Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31, 491–543 (1980).
doi: 10.1146/annurev.pp.31.060180.002423
Blonder, B. & Michaletz, S. T. A model for leaf temperature decoupling from air temperature. Agric. For. Meteorol. 262, 354–360 (2018).
doi: 10.1016/j.agrformet.2018.07.012
Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 24, 2390–2402 (2018).
doi: 10.1111/gcb.14037
pubmed: 29316093
Guha, A. et al. Short-term warming does not affect intrinsic thermotolerance but induces strong sustaining photoprotection in tropical evergreen citrus genotypes. Plant. Cell Environ. 45, 105–120 (2022).
doi: 10.1111/pce.14215
pubmed: 34723384
Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).
doi: 10.1038/s41477-020-00780-2
pubmed: 33051618
Dickman, L. T. et al. Homoeostatic maintenance of nonstructural carbohydrates during the 2015–2016 El Niño drought across a tropical forest precipitation gradient. Plant. Cell Environ. 42, 1705–1714 (2019).
doi: 10.1111/pce.13501
pubmed: 30537216
Subasinghe Achchige, Y. M., Volkova, L., Drinnan, A. & Weston, C. J. A quantitative test for heat-induced cell necrosis in vascular cambium and secondary phloem of Eucalyptus obliqua stems. J. Plant Ecol. 14, 160–169 (2021).
doi: 10.1093/jpe/rtaa081
Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
doi: 10.5194/esd-12-253-2021
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).
Vargas Zeppetello, L. R. et al. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 15, 84012 (2020).
doi: 10.1088/1748-9326/ab96d2
Araújo, I. et al. Trees at the Amazonia–Cerrado transition are approaching high temperature thresholds. Environ. Res. Lett. 16, 34047 (2021).
doi: 10.1088/1748-9326/abe3b9
Miller, S. D. et al. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol. Appl. 14, 114–126 (2004).
doi: 10.1890/02-6005
da Rocha, H. R. et al. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol. Appl. 14, 22–32 (2004).
doi: 10.1890/02-6001
Goulden, M. L. et al. Diel and seasonal patterns of tropical forest CO
doi: 10.1890/02-6008
Jin, M. & Liang, S. An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Clim. 19, 2867–2881 (2006).
Miller, S. D. et al. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc. Natl Acad. Sci. USA 108, 19431–19435 (2011).
doi: 10.1073/pnas.1105068108
pubmed: 22087005
pmcid: 3228459
Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).
doi: 10.1038/s41477-021-00952-8
pubmed: 34211130
Kealy, P. S. & Hook, S. J. Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans. Geosci. Remote Sens. 31, 1155–1164 (1993).
doi: 10.1109/36.317447
Reichle, R., De Lannoy, G., Koster, R. D., Crow, W. T. & Kimball, J. S. SMAP L4 9 km EASE-grid surface and root zone soil moisture geophysical data, version 3. National Snow and Ice Data Center https://doi.org/10.5067/B59DT1D5UMB4 (2017).
Slot, M., Krause, G. H., Krause, B., Hernández, G. G. & Winter, K. Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynth. Res. 141, 119–130 (2019).
doi: 10.1007/s11120-018-0563-3
pubmed: 30054784