Biomechanical effects of typical lower limb movements of Chen-style Tai Chi on knee joint.
Finite element model
KOA
Load distribution
Tai Chi
Tissue response
Journal
Medical & biological engineering & computing
ISSN: 1741-0444
Titre abrégé: Med Biol Eng Comput
Pays: United States
ID NLM: 7704869
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
19
03
2023
accepted:
09
08
2023
medline:
23
10
2023
pubmed:
25
8
2023
entrez:
25
8
2023
Statut:
ppublish
Résumé
The load and stress distribution on cartilage and meniscus of the knee joint in typical lower limb movements of Chen-style Tai Chi (TC) and deep squat (DS) were analyzed using finite element (FE) analysis. The loadings for this analysis consisted of muscle forces and ground reaction force (GRF), which were calculated through the inverse dynamic approach based on kinematics and force plate measurements obtained from motion capture experiments. Thirteen experienced practitioners performed four typical TC movements, namely, single whip (SW), brush knee and twist step (BKTS), stretch down (SD), and part the wild horse's mane (PWHM), which exhibit lower posture and greater lower limb force compared to other TC styles. The results indicated that TC required greater lower limb muscle strength than DS, resulting in greater knee joint forces. The stress on the medial cartilage in SW and BKTS fell within a range conductive to maintaining the balance between anabolism and catabolism of cartilage matrix. This was due to the fact that SW and BKTS reduce the medial to total tibiofemoral contact force ratios through knee abduction, which may effectively alleviate mild medial knee osteoarthritis (KOA). However, the greater medial contact force ratios observed in SD and PWHM resulted in great contact stresses that may aggravate the pain of patients with KOA. To mitigate these effects, practitioners should consider elevating their postures appropriately to reduce knee flexion angles, especially during the single-leg support phase. This adjustment can decrease the required muscle strength, load and stress on the knee joint.
Identifiants
pubmed: 37624535
doi: 10.1007/s11517-023-02906-y
pii: 10.1007/s11517-023-02906-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3087-3101Informations de copyright
© 2023. International Federation for Medical and Biological Engineering.
Références
Hu L, Wang Y, Liu X et al (2021) Tai Chi exercise can ameliorate physical and mental health of patients with knee osteoarthritis: systematic review and meta-analysis. Clin Rehabil 35:64–79
pubmed: 32954819
doi: 10.1177/0269215520954343
Duan J, Wang K, Chang T et al (2020) Tai Chi is safe and effective for the hip joint: a biomechanical perspective. J Aging Phys Act 28:415–425
doi: 10.1123/japa.2019-0129
Yang F, Liu W (2020) Biomechanical mechanism of Tai-Chi gait for preventing falls: a pilot study. J Biomech 105:109769
pubmed: 32278527
pmcid: 7239740
doi: 10.1016/j.jbiomech.2020.109769
Li Y, Wang K, Wang L et al (2019) Biomechanical analysis of the meniscus and cartilage of the knee during a typical Tai Chi movement-brush-knee and twist-step. Math Biosci Eng 16:898–908
pubmed: 30861671
doi: 10.3934/mbe.2019042
Zou L, Wang C, Tian Z et al (2017) Effect of Yang-style Tai Chi on gait parameters and musculoskeletal flexibility in healthy Chinese older women. Sports Basel Switz 5:1–12
Wang C, Schmid CH, Hibberd PL et al (2009) Tai Chi is effective in treating knee osteoarthritis: a randomized controlled trial. Arthritis Rheum 61:1545–1553
pubmed: 19877092
pmcid: 3023169
doi: 10.1002/art.24832
Li JX, Xu DQ, Hong Y (2009) Changes in muscle strength, endurance, and reaction of the lower extremities with Tai Chi intervention. J Biomech 42:967–971
pubmed: 19356761
doi: 10.1016/j.jbiomech.2009.03.001
Wu G, Hitt J (2005) Ground contact characteristics of Tai Chi gait. Gait Posture 22:32–39
pubmed: 15996589
doi: 10.1016/j.gaitpost.2004.06.005
Castrogiovanni P, Musumeci G (2016) Which is the best physical treatment for osteoarthritis? J Funct Morphol Kinesiol 1:54–68
doi: 10.3390/jfmk1010054
Bennell K, Bowles K-A, Payne C et al (2007) Effects of laterally wedged insoles on symptoms and disease progression in medial knee osteoarthritis: a protocol for a randomised, double-blind, placebo controlled trial. Bmc Musculoskelet Disord 8:96
pubmed: 17892539
pmcid: 2147062
doi: 10.1186/1471-2474-8-96
Hiligsmann M, Cooper C, Arden N et al (2013) Health economics in the field of osteoarthritis: an expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum 43:303–313
pubmed: 23992801
doi: 10.1016/j.semarthrit.2013.07.003
Taylor WR, Heller MO, Bergmann G, Duda GN (2004) Tibio-femoral loading during human gait and stair climbing. J Orthop Res 22:625–632
pubmed: 15099644
doi: 10.1016/j.orthres.2003.09.003
Sasaki K, Neptune RR (2010) Individual muscle contributions to the axial knee joint contact force during normal walking. J Biomech 43:2780–2784
pubmed: 20655046
pmcid: 2963724
doi: 10.1016/j.jbiomech.2010.06.011
Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res Off Publ Orthop Res Soc 9:113–119
doi: 10.1002/jor.1100090114
Buelt A, Narducci DM (2021) Osteoarthritis management: updated guidelines from the American College of Rheumatology and Arthritis Foundation. Am Fam Physician 103:120–121
pubmed: 33448759
Zeng C-Y, Zhang Z-R, Tang Z-M, Hua F-Z (2021) Benefits and mechanisms of exercise training for knee osteoarthritis. Front Physiol 12:794062
pubmed: 34975542
pmcid: 8716769
doi: 10.3389/fphys.2021.794062
Wang C, Schmid CH, Iversen MD et al (2016) Comparative effectiveness of Tai Chi versus physical therapy for knee osteoarthritis. Ann Intern Med 165:77–86
pubmed: 27183035
pmcid: 4960454
doi: 10.7326/M15-2143
Wang C, Schmid CH, Hibberd PL et al (2008) Tai Chi for treating knee osteoarthritis: designing a long-term follow up randomized controlled trial. Bmc Musculoskelet Disord 9:108
pubmed: 18664276
pmcid: 2529300
doi: 10.1186/1471-2474-9-108
Ye J, Cai S, Zhong W et al (2014) Effects of Tai Chi for patients with knee osteoarthritis: a systematic review. J Phys Ther Sci 26:1133–1137
pubmed: 25140112
pmcid: 4135213
doi: 10.1589/jpts.26.1133
Harlaar J, Macri EM, Wesseling M (2022) Osteoarthritis year in review 2021: mechanics. Osteoarthr Cartil 30:663–670
doi: 10.1016/j.joca.2021.12.012
Shu L, Yamamoto K, Yoshizaki R et al (2022) Multiscale finite element musculoskeletal model for intact knee dynamics. Comput Biol Med 141:105023
pubmed: 34772508
doi: 10.1016/j.compbiomed.2021.105023
Esrafilian A, Stenroth L, Mononen ME et al (2020) EMG-assisted muscle force driven finite element model of the knee joint with fibril-reinforced poroelastic cartilages and menisci. Sci Rep 10:3026
pubmed: 32080233
pmcid: 7033219
doi: 10.1038/s41598-020-59602-2
Mo F, Li J, Dan M et al (2019) Implementation of controlling strategy in a biomechanical lower limb model with active muscles for coupling multibody dynamics and finite element analysis. J Biomech 91:51–60
pubmed: 31101432
doi: 10.1016/j.jbiomech.2019.05.001
Park S, Lee S, Yoon J, Chae S-W (2019) Finite element analysis of knee and ankle joint during gait based on motion analysis. Med Eng Phys 63:33–41
pubmed: 30482441
doi: 10.1016/j.medengphy.2018.11.003
Hu J, Xin H, Chen Z et al (2019) The role of menisci in knee contact mechanics and secondary kinematics during human walking. Clin Biomech 61:58–63
doi: 10.1016/j.clinbiomech.2018.11.009
Orozco GA, Bolcos P, Mohammadi A et al (2021) Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: a computational proof-of-concept study with MRI follow-up. J Orthop Res 39:1064–1081
pubmed: 32639603
doi: 10.1002/jor.24797
Bolcos PO, Mononen ME, Tanaka MS et al (2020) Identification of locations susceptible to osteoarthritis in patients with anterior cruciate ligament reconstruction: combining knee joint computational modelling with follow-up T1ρ and T2 imaging. Clin Biomech 79:104844
doi: 10.1016/j.clinbiomech.2019.08.004
Kobsar D, Masood Z, Khan H et al (2020) Wearable inertial sensors for gait analysis in adults with osteoarthritis—a scoping review. Sensors 20:7143
pubmed: 33322187
pmcid: 7763184
doi: 10.3390/s20247143
Smith SHL, Coppack RJ, van den Bogert AJ et al (2021) Review of musculoskeletal modelling in a clinical setting: current use in rehabilitation design, surgical decision making and healthcare interventions. Clin Biomech 83:105292
doi: 10.1016/j.clinbiomech.2021.105292
Wu G, Liu W, Hitt J, Millon D (2004) Spatial, temporal and muscle action patterns of Tai Chi gait. J Electromyogr Kinesiol 14:343–354
pubmed: 15094148
doi: 10.1016/j.jelekin.2003.09.002
Shen JZ, Gu LX (1994) Chen-style Tai Chi Chuan. People’s education press (in Chinese)
Kainz H, Modenese L, Lloyd DG et al (2016) Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models. J Biomech 49:1658–1669
pubmed: 27139005
doi: 10.1016/j.jbiomech.2016.03.052
Escamilla RF (2001) Knee biomechanics of the dynamic squat exercise. Med Sci Sports Exerc 33:127–141
pubmed: 11194098
doi: 10.1097/00005768-200101000-00020
Pfister A, West AM, Bronner S, Noah JA (2014) Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J Med Eng Technol 38:274–280
pubmed: 24878252
doi: 10.3109/03091902.2014.909540
Horsman MDK, Koopman HFJM, van der Helm FCT et al (2007) Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech 22:239–247
doi: 10.1016/j.clinbiomech.2006.10.003
Alexander N, Schwameder H (2016) Comparison of estimated and measured muscle activity during inclined walking. J Appl Biomech 32:150–159
pubmed: 26502454
doi: 10.1123/jab.2015-0021
Fluit R, Andersen MS, Kolk S et al (2014) Prediction of ground reaction forces and moments during various activities of daily living. J Biomech 47:2321–2329
pubmed: 24835471
doi: 10.1016/j.jbiomech.2014.04.030
Xu D, Li J, Hong Y (2003) Tai Chi movement and proprioceptive training: a kinematics and EMG analysis. Res Sports Med Int J 11:129–144
doi: 10.1080/0308352
Alexander N, Schwameder H (2016) Lower limb joint forces during walking on the level and slopes at different inclinations. Gait Posture 45:137–142
pubmed: 26979896
doi: 10.1016/j.gaitpost.2016.01.022
Bae J, Park K, Seon J et al (2012) Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Med Biol Eng Comput 50:53–60
pubmed: 22038241
doi: 10.1007/s11517-011-0840-1
Yao J, Wen CY, Zhang M et al (2014) Effect of tibial drill-guide angle on the mechanical environment at bone tunnel aperture after anatomic single-bundle anterior cruciate ligament reconstruction. Int Orthop 38:973–981
pubmed: 24566992
pmcid: 3997784
doi: 10.1007/s00264-014-2290-5
Asano T, Akagi M, Tanaka K et al (2001) In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop:157–166
Mononen ME, Jurvelin JS, Korhonen RK (2015) Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Comput Methods Biomech Biomed Engin 18:141–152
pubmed: 23570549
doi: 10.1080/10255842.2013.783575
Teichtahl A, Wluka A, Cicuttini FM (2003) Abnormal biomechanics: a precursor or result of knee osteoarthritis? Br J Sports Med 37:289–290
pubmed: 12893709
pmcid: 1724660
doi: 10.1136/bjsm.37.4.289
Shimokata H, Ando F, Yuki A, Otsuka R (2014) Age-related changes in skeletal muscle mass among community-dwelling Japanese: A 12-year longitudinal study. Geriatr Gerontol Int 14:85–92
pubmed: 24450565
doi: 10.1111/ggi.12219
Nguyen C, Lefevre-Colau M-M, Poiraudeau S, Rannou F (2016) Rehabilitation (exercise and strength training) and osteoarthritis: a critical narrative review. Ann Phys Rehabil Med 59:190–195
pubmed: 27155923
doi: 10.1016/j.rehab.2016.02.010
Hiyama Y, Yamada M, Kitagawa A et al (2012) A four-week walking exercise programme in patients with knee osteoarthritis improves the ability of dual-task performance: a randomized controlled trial. Clin Rehabil 26:403–412
pubmed: 21975468
doi: 10.1177/0269215511421028
Richards RE, Andersen MS, Harlaar J, van den Noort JC (2018) Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: effects of gait modifications. Osteoarthritis Cartilage 26:1203–1214
pubmed: 29715509
doi: 10.1016/j.joca.2018.04.011
Miyazaki T, Wada M, Kawahara H et al (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622
pubmed: 12079903
pmcid: 1754164
doi: 10.1136/ard.61.7.617
Mauricio E, Sliepen M, Rosenbaum D (2018) Acute effects of different orthotic interventions on knee loading parameters in knee osteoarthritis patients with varus malalignment. The Knee 25:825–833
pubmed: 30017510
doi: 10.1016/j.knee.2018.06.017
Costa CR, Morrison WB, Carrino JA (2004) Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? Am J Roentgenol 183:17–23
doi: 10.2214/ajr.183.1.1830017
Fox AJS, Wanivenhaus F, Burge AJ et al (2015) The human meniscus: a review of anatomy, function, injury, and advances in treatment: the meniscus: anatomy, function, injury and treatment. Clin Anat 28:269–287
pubmed: 25125315
doi: 10.1002/ca.22456
Heijink A, Gomoll AH, Madry H et al (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20:423–435
pubmed: 22173730
doi: 10.1007/s00167-011-1818-0
Chen C, Tambe DT, Deng L, Yang L (2013) Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol-Cell Physiol 305:C1202–C1208
pubmed: 24067919
doi: 10.1152/ajpcell.00242.2013
Jørgensen AEM, Kjær M, Heinemeier KM (2017) The effect of aging and mechanical loading on the metabolism of articular cartilage. J Rheumatol 44:410–417
pubmed: 28250141
doi: 10.3899/jrheum.160226
Bedi A, Kelly NH, Baad M et al (2010) Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Jt Surg-Am Vol 92A:1398–1408
doi: 10.2106/JBJS.I.00539
Hudelmaier M, Glaser C, Hohe J et al (2001) Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum 44:2556–2561
pubmed: 11710712
doi: 10.1002/1529-0131(200111)44:11<2556::AID-ART436>3.0.CO;2-U
Tsai P-F, Chang JY, Beck C et al (2013) A pilot cluster-randomized trial of a 20-week tai chi program in elders with cognitive impairment and osteoarthritic knee: effects on pain and other health outcomes. J Pain Symptom Manage 45:660–669
pubmed: 23017610
doi: 10.1016/j.jpainsymman.2012.04.009
Englund M (2008) The role of the meniscus in osteoarthritis genesis. Rheum Dis Clin N Am 34:573
doi: 10.1016/j.rdc.2008.05.009
Buchbinder R, Harris IA, Sprowson A (2016) Management of degenerative meniscal tears and the role of surgery. Br J Sports Med 50:1413–1416
pubmed: 27802970
doi: 10.1136/bmj.h2212
Peña E, Calvo B, Martínez MA et al (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 20:498–507
doi: 10.1016/j.clinbiomech.2005.01.009
Shriram D, Kumar GP, Cui F et al (2017) Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep 7:6011
pubmed: 28729605
pmcid: 5519683
doi: 10.1038/s41598-017-06271-3
Donahue TLH, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng-Trans Asme 124:273–280
doi: 10.1115/1.1470171
Esrafilian A, Stenroth L, Mononen ME et al (2022) An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox. IEEE Trans Biomed Eng 69:2860–2871
pubmed: 35239473
doi: 10.1109/TBME.2022.3156018