Endocytosis and Endocytic Motifs across the Connexin Gene Family.
clathrin
connexins
endocytosis
gap junctions
sorting signals
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
16 Aug 2023
16 Aug 2023
Historique:
received:
27
06
2023
revised:
11
08
2023
accepted:
13
08
2023
medline:
28
8
2023
pubmed:
26
8
2023
entrez:
26
8
2023
Statut:
epublish
Résumé
Proteins fated to be internalized by clathrin-mediated endocytosis require an endocytic motif, where AP-2 or another adaptor protein can bind and recruit clathrin. Tyrosine and di-leucine-based sorting signals are such canonical motifs. Connexin 43 (Cx43) has three canonical tyrosine-based endocytic motifs, two of which have been previously shown to recruit clathrin and mediate its endocytosis. In addition, di-leucine-based motifs have been characterized in the Cx32 C-terminal domain and shown to mediate its endocytosis. Here, we examined the amino acid sequences of all 21 human connexins to identify endocytic motifs across the connexin gene family. We find that although there is limited conservation of endocytic motifs between connexins, 14 of the 21 human connexins contain one or more canonical tyrosine or di-leucine-based endocytic motif in their C-terminal or intracellular loop domain. Three connexins contain non-canonical (modified) di-leucine motifs. However, four connexins (Cx25, Cx26, Cx31, and Cx40.1) do not harbor any recognizable endocytic motif. Interestingly, live cell time-lapse imaging of different GFP-tagged connexins that either contain or do not contain recognizable endocytic motifs readily undergo endocytosis, forming clearly identifiable annular gap junctions when expressed in HeLa cells. How connexins without defined endocytic motifs are endocytosed is currently not known. Our results demonstrate that an array of endocytic motifs exists in the connexin gene family. Further analysis will establish whether the sites we identified in this in silico analysis are legitimate endocytic motifs.
Identifiants
pubmed: 37629031
pii: ijms241612851
doi: 10.3390/ijms241612851
pmc: PMC10454166
pii:
doi:
Substances chimiques
Connexins
0
Leucine
GMW67QNF9C
Clathrin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH HHS
ID : GM55725
Pays : United States
Références
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2679-80
pubmed: 15710869
FASEB J. 2014 Nov;28(11):4629-41
pubmed: 25070368
J Cell Sci. 2018 Mar 2;131(5):
pubmed: 29361528
Biochim Biophys Acta. 2013 Jan;1828(1):4-14
pubmed: 22366062
Physiology (Bethesda). 2013 Mar;28(2):93-116
pubmed: 23455769
Genomics. 2006 Feb;87(2):265-74
pubmed: 16337772
Traffic. 2010 Jun;11(6):843-55
pubmed: 20214754
Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53
pubmed: 19754430
Cell Tissue Res. 2013 Apr;352(1):21-31
pubmed: 22940728
Cardiovasc Res. 2004 May 1;62(2):228-32
pubmed: 15094343
Cell. 1996 Feb 9;84(3):381-8
pubmed: 8608591
Mol Biol Cell. 2013 Sep;24(18):2834-48
pubmed: 23885125
Front Cell Dev Biol. 2017 Feb 21;5:13
pubmed: 28271062
Int J Biochem Cell Biol. 2014 Oct;55:288-97
pubmed: 25263585
Mol Cell Biol. 2009 Jun;29(12):3307-18
pubmed: 19364824
J Cell Sci. 2007 Feb 15;120(Pt 4):543-53
pubmed: 17287393
Cold Spring Harb Perspect Biol. 2013 Nov 01;5(11):a016790
pubmed: 24186068
J Cell Biol. 1998 Mar 9;140(5):1055-62
pubmed: 9490719
J Cell Sci. 2012 Sep 1;125(Pt 17):3966-76
pubmed: 22623726
J Cell Biol. 1981 Aug;90(2):521-6
pubmed: 7287816
Membranes (Basel). 2015 Jul 03;5(3):253-87
pubmed: 26151885
J Mol Cell Cardiol. 2015 Nov;88:1-13
pubmed: 26386426
Mol Biol Cell. 2006 Oct;17(10):4300-17
pubmed: 16870701
Annu Rev Biochem. 2012;81:203-29
pubmed: 22524316
Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):5-8
pubmed: 28559187
J Cell Biol. 2003 Oct 27;163(2):203-8
pubmed: 14581447
Biochem J. 1991 Jan 1;273(Pt 1):67-72
pubmed: 1846532
J Cell Sci. 2003 Jun 1;116(Pt 11):2213-22
pubmed: 12730291
FEBS Lett. 2008 Aug 20;582(19):2887-92
pubmed: 18656476
Biophys J. 2014 May 20;106(10):2184-95
pubmed: 24853747
J Cell Sci. 2018 Aug 9;131(15):
pubmed: 30054380
J Vet Med Sci. 2012 Jan;74(1):17-25
pubmed: 21873807
Elife. 2014 Sep 17;3:e03970
pubmed: 25232658
J Cell Biol. 1995 May;129(3):805-17
pubmed: 7537274
J Biol Chem. 2016 Apr 1;291(14):7637-50
pubmed: 26841867
Cardiovasc Res. 2004 May 1;62(2):256-67
pubmed: 15094346
Biochem J. 2011 Jul 15;437(2):255-67
pubmed: 21554242
J Cell Sci. 2006 Sep 1;119(Pt 17):3634-42
pubmed: 16931598
Int J Mol Sci. 2020 Jul 29;21(15):
pubmed: 32751343
Brain Res Bull. 2021 Sep;174:153-160
pubmed: 34139316
Biochem Biophys Res Commun. 2008 Oct 3;374(4):679-82
pubmed: 18675253
BMC Cell Biol. 2016 May 24;17 Suppl 1:22
pubmed: 27230503
Exp Cell Res. 2009 Dec 10;315(20):3587-97
pubmed: 19835873
J Cell Sci. 2009 Nov 1;122(Pt 21):3883-93
pubmed: 19808888
Annu Rev Biochem. 2003;72:395-447
pubmed: 12651740
J Proteome Res. 2012 Dec 7;11(12):6134-46
pubmed: 23106098
J Cell Mol Med. 2015 Jan;19(1):257-64
pubmed: 25388970
Traffic. 2011 Dec;12(12):1793-804
pubmed: 21917092
Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a016725
pubmed: 24789820
Compr Physiol. 2012 Jul;2(3):1981-2035
pubmed: 23723031
Eur J Neurosci. 2018 Nov;48(9):3062-3081
pubmed: 30295974
Mol Biol Cell. 2007 Feb;18(2):337-47
pubmed: 17108328
Nature. 2003 Mar 6;422(6927):37-44
pubmed: 12621426
Cell. 2002 May 17;109(4):523-35
pubmed: 12086608
J Bioenerg Biomembr. 2013 Feb;45(1-2):59-70
pubmed: 23065326