Molecular Dynamics Simulations of Deformable Viral Capsomers.

coarse-grained models deformable nanostructures elasticity molecular dynamics simulations self-assembly soft capsomers viral capsids

Journal

Viruses
ISSN: 1999-4915
Titre abrégé: Viruses
Pays: Switzerland
ID NLM: 101509722

Informations de publication

Date de publication:
31 07 2023
Historique:
received: 22 06 2023
revised: 27 07 2023
accepted: 29 07 2023
medline: 28 8 2023
pubmed: 26 8 2023
entrez: 26 8 2023
Statut: epublish

Résumé

Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many features of the rigid-body models, including an overall trapezoidal shape with attractive interaction sites embedded in the lateral walls to favor icosahedral capsid assembly. Molecular dynamics simulations of deformable capsomers reproduce the rich self-assembly behavior associated with a general T=1 icosahedral virus system in the absence of a genome. Transitions from non-assembled configurations to icosahedral capsids to kinetically-trapped malformed structures are observed as the steric attraction between capsomers is increased. An assembly diagram in the space of capsomer-capsomer steric attraction and capsomer deformability reveals that assembling capsomers of higher deformability into capsids requires increasingly large steric attraction between capsomers. Increasing capsomer deformability can reverse incorrect capsomer-capsomer binding, facilitating transitions from malformed structures to symmetric capsids; however, making capsomers too soft inhibits assembly and yields fluid-like structures.

Identifiants

pubmed: 37632014
pii: v15081672
doi: 10.3390/v15081672
pmc: PMC10459744
pii:
doi:

Substances chimiques

Capsid Proteins 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Références

Adv Chem Phys. 2014;155:1-68
pubmed: 25663722
Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10046-50
pubmed: 1438193
Nature. 1997 Mar 6;386(6620):91-4
pubmed: 9052787
Biochemistry. 2002 Oct 1;41(39):11525-31
pubmed: 12269796
Phys Rev Lett. 2020 Dec 11;125(24):248001
pubmed: 33412054
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051917
pubmed: 23214824
Biophys J. 2011 Jun 8;100(11):L59-61
pubmed: 21641297
J Am Chem Soc. 2009 Feb 25;131(7):2606-14
pubmed: 19199626
Proc Natl Acad Sci U S A. 1955 Oct 15;41(10):690-8
pubmed: 16589730
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 1):021917
pubmed: 16196614
J Phys Condens Matter. 2017 Nov 29;29(47):474003
pubmed: 29027904
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4150-5
pubmed: 18334651
J Mol Biol. 2014 Sep 9;426(18):3148-3165
pubmed: 25036288
Phys Biol. 2010 Dec 09;7(4):045001
pubmed: 21149970
ACS Nano. 2011 Nov 22;5(11):8892-903
pubmed: 21950837
Phys Rev Lett. 2011 May 6;106(18):188101
pubmed: 21635128
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2724-9
pubmed: 14981262
Cell. 1994 Jun 17;77(6):943-50
pubmed: 8004680
Curr Opin Virol. 2018 Aug;31:82-91
pubmed: 30181049
J Biol Phys. 2018 Jun;44(2):147-162
pubmed: 29607454
J Chem Phys. 2017 Apr 7;146(13):134902
pubmed: 28390351
Nano Lett. 2008 Nov;8(11):3850-7
pubmed: 18950240
J Am Chem Soc. 2022 Jul 20;144(28):12608-12612
pubmed: 35792573
Cold Spring Harb Symp Quant Biol. 1962;27:1-24
pubmed: 14019094
J Mater Chem B. 2019 Oct 23;7(41):6370-6382
pubmed: 31642850
J Phys Chem B. 2016 Jul 7;120(26):6003-9
pubmed: 27027925
Phys Rev Lett. 2010 Aug 20;105(8):088305
pubmed: 20868137
Curr Opin Virol. 2016 Jun;18:36-43
pubmed: 27016708
PLoS One. 2013 Apr 16;8(4):e60582
pubmed: 23613730
J Am Chem Soc. 2014 Mar 5;136(9):3536-41
pubmed: 24548133
Biophys J. 1993 Mar;64(3):824-35
pubmed: 8471727
Phys Rev Lett. 2011 Sep 23;107(13):135701
pubmed: 22026873
ACS Nano. 2015 Sep 22;9(9):9087-96
pubmed: 26266555
Anal Chem. 2017 May 2;89(9):4855-4862
pubmed: 28322548
Phys Biol. 2010 Dec 09;7(4):045003
pubmed: 21149971
J Chem Theory Comput. 2023 Jun 13;19(11):3025-3036
pubmed: 37192279
J Phys Chem A. 2008 Oct 2;112(39):9405-12
pubmed: 18754598
J Chem Phys. 2013 Apr 21;138(15):154901
pubmed: 23614442
Virology. 2000 Nov 25;277(2):450-6
pubmed: 11080492
Phys Rev Lett. 2023 Mar 31;130(13):130002
pubmed: 37067323
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9216-20
pubmed: 18587050
Nano Lett. 2007 Feb;7(2):338-44
pubmed: 17297998
Elife. 2016 May 11;5:
pubmed: 27166515
Biophys J. 2006 Jul 1;91(1):42-54
pubmed: 16565055
J Chem Phys. 2012 Apr 7;136(13):135101
pubmed: 22482588
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051905
pubmed: 15600654
Nano Lett. 2008 Dec;8(12):4574-81
pubmed: 19367856
Curr Opin Struct Biol. 2010 Feb;20(1):114-20
pubmed: 20060706
ACS Nano. 2022 Sep 27;16(9):13845-13859
pubmed: 36054910

Auteurs

Lauren B Nilsson (LB)

Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.

Fanbo Sun (F)

Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.

J C S Kadupitiya (JCS)

Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.

Vikram Jadhao (V)

Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Classifications MeSH