Identification of Molecular and Genetic Resistance Mechanisms in a Candida auris Isolate in a Tertiary Care Center in Türkiye.
Antifungal resistance
Candida auris
Long sequence reads
MIC
NGS
Whole genome sequencing
Journal
Mycopathologia
ISSN: 1573-0832
Titre abrégé: Mycopathologia
Pays: Netherlands
ID NLM: 7505689
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
03
03
2023
accepted:
16
08
2023
medline:
1
12
2023
pubmed:
28
8
2023
entrez:
28
8
2023
Statut:
ppublish
Résumé
Candida auris is a multidrug-resistant pathogen that causes nosocomial outbreaks and high mortality. We conducted this study to investigate the molecular mechanisms of antifungal resistance in our clinical isolate of C. auris with a high level of resistance to three main classes of antifungals. A clinical C. auris isolate was identified by MALDI-TOF MS and antifungal susceptibilities were determined by the Sensititre YeastOne YO10 panel. After sequencing the whole genome of the microorganism with Oxford Nanopore NGS Technologies, a phylogenetic tree was drawn as a cladogram to detect where the C. auris clade to this study's assembly belongs. The C. auris isolate in this study (MaCa01) was determined to be a part of the clade I (South Asian). The resistance-related genes indicated that MaCa01 would most likely be highly resistant to fluconazole (CDR1, TAC1b, and ERG11), none or little resistant to amphotericin B (AmpB) and echinocandins, and sensitive to flucytosine. The mutations found in the above-mentioned genes in the Türkiye C. auris isolate reveals an antifungal resistance pattern. This molecular resistance pattern was found consistent with the interpretation of MIC values of the antifungals according to CDC tentative breakpoints. We detected the well-known antifungal resistance mutations, responsible for azole resistance in C. auris. Despite no ERG2, ERG6, and FKS mutation identified, the isolate was found to be resistant to AmpB and caspofungin based on the CDC tentative breakpoints which could be related to unidentified mutations.
Sections du résumé
BACKGROUND
BACKGROUND
Candida auris is a multidrug-resistant pathogen that causes nosocomial outbreaks and high mortality. We conducted this study to investigate the molecular mechanisms of antifungal resistance in our clinical isolate of C. auris with a high level of resistance to three main classes of antifungals.
MATERIAL AND METHODS
METHODS
A clinical C. auris isolate was identified by MALDI-TOF MS and antifungal susceptibilities were determined by the Sensititre YeastOne YO10 panel. After sequencing the whole genome of the microorganism with Oxford Nanopore NGS Technologies, a phylogenetic tree was drawn as a cladogram to detect where the C. auris clade to this study's assembly belongs.
RESULTS
RESULTS
The C. auris isolate in this study (MaCa01) was determined to be a part of the clade I (South Asian). The resistance-related genes indicated that MaCa01 would most likely be highly resistant to fluconazole (CDR1, TAC1b, and ERG11), none or little resistant to amphotericin B (AmpB) and echinocandins, and sensitive to flucytosine. The mutations found in the above-mentioned genes in the Türkiye C. auris isolate reveals an antifungal resistance pattern. This molecular resistance pattern was found consistent with the interpretation of MIC values of the antifungals according to CDC tentative breakpoints.
CONCLUSION
CONCLUSIONS
We detected the well-known antifungal resistance mutations, responsible for azole resistance in C. auris. Despite no ERG2, ERG6, and FKS mutation identified, the isolate was found to be resistant to AmpB and caspofungin based on the CDC tentative breakpoints which could be related to unidentified mutations.
Identifiants
pubmed: 37639054
doi: 10.1007/s11046-023-00787-1
pii: 10.1007/s11046-023-00787-1
doi:
Substances chimiques
Antifungal Agents
0
Amphotericin B
7XU7A7DROE
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
929-936Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Di Pilato V, Codda G, Ball L, Giacobbe DR, Willison E, Mikulska M, et al. Molecular epidemiological investigation of a nosocomial cluster of C. auris: evidence of recent emergence in Italy and ease of transmission during the COVID-19 pandemic. J Fungi (Basel). 2021;7(2):140. https://doi.org/10.3390/jof7020140 .
doi: 10.3390/jof7020140
pubmed: 33672021
Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF. Potential fifth clade of Candida auris, Iran, 2018. Emerg Infect Dis. 2019;25(9):1780–1. https://doi.org/10.3201/eid2509.190686 .
doi: 10.3201/eid2509.190686
pubmed: 31310230
pmcid: 6711235
Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–40. https://doi.org/10.1093/cid/ciw691 .
doi: 10.1093/cid/ciw691
pubmed: 27988485
Centers for Disease Control and Prevention (CDC): C. auris: antifungal susceptibility testing and interpretation. https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html (2020). Accessed 29 May 2020.
Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73(4):891–9. https://doi.org/10.1093/jac/dkx480 .
doi: 10.1093/jac/dkx480
pubmed: 29325167
Magobo RE, Corcoran C, Seetharam S, Govender NP. Candida auris-associated candidemia, South Africa. Emerg Infect Dis. 2014;20(7):1250–1. https://doi.org/10.3201/eid2007.131765 .
doi: 10.3201/eid2007.131765
pubmed: 24963796
pmcid: 4073876
Chow NA, Munoz JF, Gade L, Berkow EL, Li X, Welsh RM, et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. MBio. 2020. https://doi.org/10.1128/mBio.03364-19 .
doi: 10.1128/mBio.03364-19
pubmed: 32345637
pmcid: 7188998
Chaabane F, Graf A, Jequier L, Coste AT. Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front Microbiol. 2019;10:2788. https://doi.org/10.3389/fmicb.2019.02788 .
doi: 10.3389/fmicb.2019.02788
pubmed: 31849919
pmcid: 6896226
Rybak JM, Barker KS, Munoz JF, Parker JE, Ahmad S, Mokaddas E, et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin Microbiol Infect. 2022;28(6):838–43. https://doi.org/10.1016/j.cmi.2021.11.024 .
doi: 10.1016/j.cmi.2021.11.024
pubmed: 34915074
Rhodes J, Abdolrasouli A, Farrer RA, Cuomo CA, Aanensen DM, Armstrong-James D, et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect. 2018;7(1):43. https://doi.org/10.1038/s41426-018-0045-x .
doi: 10.1038/s41426-018-0045-x
pubmed: 29593275
pmcid: 5874254
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6. https://doi.org/10.1038/s41587-019-0072-8 .
doi: 10.1038/s41587-019-0072-8
pubmed: 30936562
Gosselin SFM, Feng Y, Gogarten JP. Expanding the utility of sequence comparisons using data from whole genomes. bioRxiv. 2020. https://doi.org/10.1101/2020.01.15.908137 .
doi: 10.1101/2020.01.15.908137
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6. https://doi.org/10.1093/nar/gkab301 .
doi: 10.1093/nar/gkab301
pubmed: 33885785
pmcid: 8265157
Nash A, Sewell T, Farrer RA, Abdolrasouli A, Shelton JMG, Fisher MC, et al. MARDy: mycology antifungal resistance database. Bioinformatics. 2018;34(18):3233–4. https://doi.org/10.1093/bioinformatics/bty321 .
doi: 10.1093/bioinformatics/bty321
pubmed: 29897419
pmcid: 6137992
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–303. https://doi.org/10.1093/nar/gky427 .
doi: 10.1093/nar/gky427
pubmed: 29788355
pmcid: 6030848
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82. https://doi.org/10.1002/pro.3943 .
doi: 10.1002/pro.3943
pubmed: 32881101
Rhodes J, Fisher MC. Global epidemiology of emerging Candida auris. Curr Opin Microbiol. 2019;52:84–9. https://doi.org/10.1016/j.mib.2019.05.008 .
doi: 10.1016/j.mib.2019.05.008
pubmed: 31279224
Frias-De-Leon MG, Hernandez-Castro R, Vite-Garin T, Arenas R, Bonifaz A, Castanon-Olivares L, et al. Antifungal resistance in Candida auris: molecular determinants. Antibiotics (Basel). 2020;9(9):568. https://doi.org/10.3390/antibiotics9090568 .
doi: 10.3390/antibiotics9090568
pubmed: 32887362
Rybak JM, Munoz JF, Barker KS, Parker JE, Esquivel BD, Berkow EL, et al. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. MBio. 2020. https://doi.org/10.1128/mBio.00365-20 .
doi: 10.1128/mBio.00365-20
pubmed: 32398311
pmcid: 7218281
Carolus H, Pierson S, Munoz JF, Subotic A, Cruz RB, Cuomo CA, et al. Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug resistance. MBio. 2021. https://doi.org/10.1128/mBio.03333-20 .
doi: 10.1128/mBio.03333-20
pubmed: 33820824
pmcid: 8092288
Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE, Rogers PD. Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/AAC.00057-19 .
doi: 10.1128/AAC.00057-19
pubmed: 31405859
pmcid: 6811452
Centers for Disease Control and Prevention (CDC): Antibiotic resistance threats in the United States. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (2019). Accessed 26 March 2019.
Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere. 2018. https://doi.org/10.1128/mSphere.00334-18 .
doi: 10.1128/mSphere.00334-18
pubmed: 29997121
pmcid: 6041501
Lockhart SR. Candida auris and multidrug resistance: defining the new normal. Fungal Genet Biol. 2019;131:103243. https://doi.org/10.1016/j.fgb.2019.103243 .
doi: 10.1016/j.fgb.2019.103243
pubmed: 31228646
Arendrup MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 2017;216(suppl_3):S445–51. https://doi.org/10.1093/infdis/jix131 .
doi: 10.1093/infdis/jix131
pubmed: 28911043
Asadzadeh M, Mokaddas E, Ahmad S, Abdullah AA, de Groot T, Meis JF, et al. Molecular characterisation of Candida auris isolates from immunocompromised patients in a tertiary-care hospital in Kuwait reveals a novel mutation in FKS1 conferring reduced susceptibility to echinocandins. Mycoses. 2022;65(3):331–43. https://doi.org/10.1111/myc.13419 .
doi: 10.1111/myc.13419
pubmed: 34953089
Beyda ND, Lewis RE, Garey KW. Echinocandin resistance in Candida species: mechanisms of reduced susceptibility and therapeutic approaches. Ann Pharmacother. 2012;46(7–8):1086–96. https://doi.org/10.1345/aph.1R020 .
doi: 10.1345/aph.1R020
pubmed: 22811350
Walker LA, Gow NA, Munro CA. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother. 2013;57(1):146–54. https://doi.org/10.1128/AAC.01486-12 .
doi: 10.1128/AAC.01486-12
pubmed: 23089748
pmcid: 3535899
Fayed B, Jayakumar MN, Soliman SSM. Caspofungin-resistance in Candida auris is cell wall-dependent phenotype and potential prevention by zinc oxide nanoparticles. Med Mycol. 2021;59(12):1243–56. https://doi.org/10.1093/mmy/myab059 .
doi: 10.1093/mmy/myab059
pubmed: 34612496