Amyloid Fibrils Formed by Short Prion-Inspired Peptides Are Metalloenzymes.
amyloid fibrils
biocatalytic nanomaterials
bioremediation
nanoenzymes
peptides
self-assembly
Journal
ACS nano
ISSN: 1936-086X
Titre abrégé: ACS Nano
Pays: United States
ID NLM: 101313589
Informations de publication
Date de publication:
12 09 2023
12 09 2023
Historique:
medline:
14
9
2023
pubmed:
30
8
2023
entrez:
30
8
2023
Statut:
ppublish
Résumé
Enzymes typically fold into defined 3D protein structures exhibiting a high catalytic efficiency and selectivity. It has been proposed that the earliest enzymes may have arisen from the self-assembly of short peptides into supramolecular amyloid-like structures. Several artificial amyloids have been shown to display catalytic activity while offering advantages over natural enzymes in terms of modularity, flexibility, stability, and reusability. Hydrolases, especially esterases, are the most common artificial amyloid-like nanozymes with some reported to act as carbonic anhydrases (CA). Their hydrolytic activity is often dependent on the binding of metallic cofactors through a coordination triad composed of His residues in the β-strands, which mimic the arrangement found in natural metalloenzymes. Tyr residues contribute to the coordination of metal ions in the active center of metalloproteins; however, their use has been mostly neglected in the design of metal-containing amyloid-based nanozymes. We recently reported that four different polar prion-inspired heptapeptides spontaneously self-assembled into amyloid fibrils. Their sequences lack His but contain three alternate Tyr residues exposed to solvent. We combine experiments and simulations to demonstrate that the amyloid fibrils formed by these peptides can efficiently coordinate and retain different divalent metal cations, functioning as both metal scavengers and nanozymes. The metallized fibrils exhibit esterase and CA activities without the need for a histidine triad. These findings highlight the functional versatility of prion-inspired peptide assemblies and provide a new sequential context for the creation of artificial metalloenzymes. Furthermore, our data support amyloid-like structures acting as ancestral catalysts at the origin of life.
Identifiants
pubmed: 37647583
doi: 10.1021/acsnano.3c04164
pmc: PMC10510724
doi:
Substances chimiques
Amyloid
0
Prions
0
Peptides
0
Amyloidogenic Proteins
0
Metalloproteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16968-16979Références
Chembiochem. 2013 Jun 17;14(9):1123-33
pubmed: 23737293
Nanoscale. 2017 Aug 3;9(30):10773-10783
pubmed: 28722055
Angew Chem Int Ed Engl. 1978 Aug;17(8):583-92
pubmed: 101098
Nat Chem. 2011 Nov 27;4(2):118-23
pubmed: 22270627
J Mol Biol. 1997 Apr 4;267(3):727-48
pubmed: 9126849
Science. 2006 Sep 15;313(5793):1586-7
pubmed: 16973868
Nat Rev Drug Discov. 2008 Feb;7(2):168-81
pubmed: 18167490
Acc Chem Res. 2019 Aug 20;52(8):2190-2200
pubmed: 31276379
EXS. 2000;(90):175-95
pubmed: 11268516
Faraday Discuss. 1992;(93):75-84
pubmed: 1290941
Nat Catal. 2019 Nov;2(11):977-985
pubmed: 31742246
Nat Chem. 2014 Apr;6(4):303-9
pubmed: 24651196
J Mol Model. 2011 Dec;17(12):3117-28
pubmed: 21360187
Chem Commun (Camb). 2017 May 23;53(42):5714-5717
pubmed: 28487912
J Inorg Biochem. 1998 Sep;71(3-4):115-27
pubmed: 9833317
Nanomaterials (Basel). 2022 Oct 28;12(21):
pubmed: 36364578
Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14511-14515
pubmed: 28941038
Protein Sci. 1999 May;8(5):985-90
pubmed: 10338009
Nature. 2009 Aug 13;460(7257):855-62
pubmed: 19675646
J Am Chem Soc. 2007 Oct 10;129(40):12082-3
pubmed: 17854188
Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789
pubmed: 9944570
J Am Chem Soc. 2019 Nov 20;141(46):18585-18599
pubmed: 31675221
Chemistry. 2021 Mar 22;27(17):5388-5392
pubmed: 33460473
PLoS One. 2015 Dec 09;10(12):e0143948
pubmed: 26650386
Chem Soc Rev. 2017 Jul 31;46(15):4661-4708
pubmed: 28530745
J Comput Chem. 2018 Jan 5;39(1):42-51
pubmed: 29076256
ACS Nano. 2018 Jun 26;12(6):5394-5407
pubmed: 29812908
Nat Nanotechnol. 2016 Apr;11(4):365-71
pubmed: 26809058
J Biol Chem. 1967 Sep 25;242(18):4221-9
pubmed: 4964830
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6191-6196
pubmed: 28566494
J Chem Phys. 2010 Apr 21;132(15):154104
pubmed: 20423165
J Mol Biol. 2018 Oct 12;430(20):3735-3750
pubmed: 29890117
J Mater Chem B. 2013 May 7;1(17):2297-2304
pubmed: 32260883
Adv Nutr. 2013 Jan 01;4(1):82-91
pubmed: 23319127
Prion. 2018;12(5-6):266-272
pubmed: 30196749
Biomolecules. 2013 Aug 19;3(3):553-62
pubmed: 24970180
Int J Mol Sci. 2021 Aug 25;22(17):
pubmed: 34502074
J Mol Biol. 2012 Aug 24;421(4-5):417-26
pubmed: 22542525
Acc Chem Res. 2005 May;38(5):379-85
pubmed: 15895975
Science. 2003 Aug 29;301(5637):1196-202
pubmed: 12947189
ACS Catal. 2018 Jan 5;8(1):59-62
pubmed: 30319881
Chem Sci. 2020 Nov 2;11(48):13143-13151
pubmed: 34094496
ACS Nano. 2014 Nov 25;8(11):11715-23
pubmed: 25375351
Chem Soc Rev. 2018 May 21;47(10):3621-3639
pubmed: 29594277
Biochemistry. 2005 Feb 1;44(4):1097-105
pubmed: 15667203
Nat Chem. 2017 Aug;9(8):805-809
pubmed: 28754939
J Phys Chem B. 2009 May 7;113(18):6378-96
pubmed: 19366259