A novel molecularly imprinting polypyrrole electrochemiluminescence sensor based on MIL-101-g-C

Ciprofloxacin ECL sensor MIL-101-g-C3N4 MIP Supersensitive determination

Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
30 08 2023
Historique:
received: 06 04 2023
accepted: 13 08 2023
medline: 1 9 2023
pubmed: 31 8 2023
entrez: 30 8 2023
Statut: epublish

Résumé

Ciprofloxacin (CIP), a quinolone antibiotic, was rapidly and sensitively detected by integrating the molecularly imprinted polymer (MIP) with an ultra-sensitive electrochemiluminescence (ECL) method. g-C

Identifiants

pubmed: 37648847
doi: 10.1007/s00604-023-05956-z
pii: 10.1007/s00604-023-05956-z
doi:

Substances chimiques

polypyrrole 30604-81-0
Polymers 0
MIL-101 0
Metal-Organic Frameworks 0
Pyrroles 0
Ciprofloxacin 5E8K9I0O4U
Molecularly Imprinted Polymers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

373

Subventions

Organisme : National Natural Science Foundation of China
ID : 22178031
Organisme : Science and Technology Project of Changzhou City
ID : CJ20210139

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Ahmad B, Parveen S, Khan RH (2006) Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromol 7(4):1350–1356. https://doi.org/10.1021/bm050996b
doi: 10.1021/bm050996b
Yuan C, He Z, Chen Q et al (2021) Selective and efficacious photoelectrochemical detection of ciprofloxacin based on the self-assembly of 2D/2D g-C
doi: 10.1016/j.apsusc.2020.148241
Chen H, Gao B, Li H (2015) Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater 282:201–207. https://doi.org/10.1016/j.jhazmat.2014.03.063
doi: 10.1016/j.jhazmat.2014.03.063 pubmed: 24755346
Gürbay A, Gonthier B, Signorini-Allibe N et al (2006) Ciprofloxacin-induced DNA damage in primary culture of rat astrocytes and protection by vitamin E. Neurotoxicology 27(1):6–10. https://doi.org/10.1016/j.neuro.2005.05.007
doi: 10.1016/j.neuro.2005.05.007 pubmed: 16122804
Liu J, Chen K, Li B et al (2012) A novel method to determine ciprofloxacin by enhanced electrochemiluminescence of Tb (bpy)
doi: 10.1039/C2AY25316J
Lu C, Liu G, Yang Z et al (2020) A ratiometric fluorometric ciprofloxacin assay based on the use of riboflavin and carbon dots. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-019-3888-5
doi: 10.1007/s00604-019-3888-5
Ma X, Gao W, Du F et al (2021) Rational design of electrochemiluminescent devices. Accounts of Chem Res 54(14):2936–2945. https://doi.org/10.1021/acs.accounts.1c00230
doi: 10.1021/acs.accounts.1c00230
Yue F, Li F, Kong Q et al (2021) Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. Sci Total Environ 762:143129. https://doi.org/10.1016/j.scitotenv.2020.143129
doi: 10.1016/j.scitotenv.2020.143129 pubmed: 33121792
Zhang J, Zhang Z, Wang Y et al (2012) Immobilized Ru(bpy)
doi: 10.1016/S1872-2040(11)60548-3
Li S, Pang C, Ma X et al (2022) Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanoparticle amplification for ultrasensitive ciprofloxacin detection. Microchem J 178:107345. https://doi.org/10.1016/j.microc.2022.107345
doi: 10.1016/j.microc.2022.107345
Qian J, Wang K, Jin Y et al (2014) Polyoxometalate@magnetic graphene as versatile immobilization matrix of Ru(bpy)
doi: 10.1016/j.bios.2014.02.005 pubmed: 24583685
Liang R, Yu L, Tong Y et al (2018) An ultratrace assay of arsenite based on the synergistic quenching effect of Ru(bpy)
doi: 10.1039/c8cc08353c
Deng Y, Tang L, Zeng G et al (2017) Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C
doi: 10.1016/j.apcatb.2016.10.046
Yin J, Chen X, Chen Z (2019) Quenched electrochemiluminescence sensor of ZnO@g-C
doi: 10.1016/j.microc.2018.09.030
Chen L, Zeng X, Si P et al (2014) Gold nanoparticle-graphite-like C
doi: 10.1021/ac403635f pubmed: 24707951
Cai G, Yan P, Zhang L et al (2021) Metal–organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 121(20):12278–12326. https://doi.org/10.1021/acs.chemrev.1c00243
doi: 10.1021/acs.chemrev.1c00243 pubmed: 34280313
Huang P, Yao L, Chang Q et al (2022) Room-temperature preparation of highly efficient NH
doi: 10.1016/j.chemosphere.2021.133026 pubmed: 34822869
Liu Z, He W, Zhang Q et al (2021) Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega 6(7):4597–4608. https://doi.org/10.1021/acsomega.0c05091
doi: 10.1021/acsomega.0c05091 pubmed: 33644567 pmcid: 7905816
Huo Q, Liu G, Sun H et al (2021) CeO
doi: 10.1016/j.cej.2021.130036
Fang J, Li J, Feng R et al (2021) Dual-quenching electrochemiluminescence system based on novel acceptor CoOOH@Au NPs for early detection of procalcitonin. Sensor Actuat B-Chem 332:129544. https://doi.org/10.1016/j.snb.2021.129544
doi: 10.1016/j.snb.2021.129544
Ai Z, Zhao M, Han D et al (2021) An “on-off” electrochemiluminescence immunosensor for PIVKA-II detection based on the dual quenching of CeO
doi: 10.1016/j.bios.2021.113059 pubmed: 33561664
Wang X, Zhu K, Zhu J et al (2021) Photonic crystal of polystyrene nanomembrane: Signal amplification and low triggered potential electrochemiluminescence for tetracycline detection. Anal Chem 93(5):2959–2967. https://doi.org/10.1021/acs.analchem.0c04613
doi: 10.1021/acs.analchem.0c04613 pubmed: 33506679
Zhang R, Zhan J, Xu J et al (2020) Application of a novel electrochemiluminescence sensor based on magnetic glassy carbon electrode modified with molecularly imprinted polymers for sensitive monitoring of bisphenol A in seawater and fish samples. Sensor Actuat B-Chem 317:128237. https://doi.org/10.1016/j.snb.2020.128237
doi: 10.1016/j.snb.2020.128237
Yang B, Fu C, Li J et al (2018) Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. TrAC Trend Anal Chem 105:52–67. https://doi.org/10.1016/j.trac.2018.04.011
doi: 10.1016/j.trac.2018.04.011
Jin X, Fang G, Pan M et al (2018) A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol. Biosens Bioelectron 102:357–364. https://doi.org/10.1016/j.bios.2017.11.016
doi: 10.1016/j.bios.2017.11.016 pubmed: 29172144
Wang Y, Sun X, Cai L et al (2022) A “signal on/off” biomimetic electrochemiluminescence sensor using titanium carbide nanodots as co-reaction accelerator for ultra-sensitive detection of ciprofloxacin. Anal Chim Acta 1206:339690. https://doi.org/10.1016/j.aca.2022.339690
doi: 10.1016/j.aca.2022.339690 pubmed: 35473881
Rezaei B, Boroujeni MK, Ensafi AA (2014) A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol-gel@gold nanoparticles/pencil graphite electrode. Electrochim Acta 123:332–339. https://doi.org/10.1016/j.electacta.2014.01.056
doi: 10.1016/j.electacta.2014.01.056
Mazouz Z, Mokni M, Fourati N et al (2020) Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosens Bioelectron 151:111978. https://doi.org/10.1016/j.bios.2019.111978
doi: 10.1016/j.bios.2019.111978 pubmed: 31999585
Shi H, Li C, Wang L et al (2023) Efficient photocatalytic degradation of ammonia nitrogen by Z-scheme NH
doi: 10.1016/j.jallcom.2022.167815
Wu Q, Tian L, Shan X et al (2022) An electrochemiluminescence sensor for sensitive detection of malathion based on g-C
doi: 10.1007/s00604-022-05517-w
Lin Z, Li P, Zheng D et al (2023) Highly efficient synthesis of CeO
doi: 10.1016/j.microc.2023.108588
Lu Q, Zhang J, Liu X et al (2014) Enhanced electrochemiluminescence sensor for detecting dopamine based on gold nanoflower@graphitic carbon nitride polymer nanosheet–polyaniline hybrids. Analyst 139(24):6556–6562. https://doi.org/10.1039/c4an01595a
doi: 10.1039/c4an01595a pubmed: 25356445
Bu L, Chen X, Song Q et al (2022) Supersensitive detection of chloramphenicol with an EIS method based on molecularly imprinted polypyrrole at UiO-66 and CDs modified electrode. Microchem J 179:107459. https://doi.org/10.1016/j.microc.2022.107459
doi: 10.1016/j.microc.2022.107459
Zhang Y, Du X, Wei M et al (2023) Self-powered photoelectrochemical aptasensor for sensitive detection of Microcystin-RR by integrating TiO
doi: 10.1016/j.aca.2022.340645 pubmed: 36464455
Shan J, Li R, Yan K et al (2016) In situ anodic stripping of Cd(II) from CdS quantum dots for electrochemical sensing of ciprofloxacin. Sens Actuat B-Chem 237:75–80. https://doi.org/10.1016/j.snb.2016.06.066
doi: 10.1016/j.snb.2016.06.066
Fotouhi L, Alahyari M (2010) Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloid Surface B 81(1):110–114. https://doi.org/10.1016/j.colsurfb.2011.01.020
doi: 10.1016/j.colsurfb.2011.01.020
Zhang S, Wei S (2007) Electrochemical determination of ciprofloxacin based on the enhancement effect of sodium dodecyl benzene sulfonate. B Korean Chem Soc 28(4):543–546. https://doi.org/10.5012/bkcs.2007.28.4.543
doi: 10.5012/bkcs.2007.28.4.543
Shan J, Liu Y, Li R et al (2015) Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd(II) on graphene-modified electrode. J Electroanal Chem 738:123–129. https://doi.org/10.1016/j.jelechem.2014.11.031
doi: 10.1016/j.jelechem.2014.11.031
Torriero AA, Ruiz Díaz JJ, Salinas E et al (2006) Enzymatic rotating biosensor for ciprofloxacin determination. Talanta 69(3):691–699. https://doi.org/10.1016/j.talanta.2005.11.005
doi: 10.1016/j.talanta.2005.11.005 pubmed: 18970624
Ensafi AA, Taei M, Khayamian T et al (2010) Simultaneous voltammetric determination of enrofloxacin and ciprofloxacin in urine and plasma using multiwall carbon nanotubes modified glassy carbon electrode by least-squares support vector machines. Anal Sci 26(7):803–808. https://doi.org/10.2116/analsci.26.803
doi: 10.2116/analsci.26.803 pubmed: 20631443
Yan H, Row KH, Yang G (2008) Water-compatible molecularly imprinted polymers for selective extraction of ciprofloxacin from human urine. Talanta 75(1):227–232. https://doi.org/10.1016/j.talanta.2007.11.002
doi: 10.1016/j.talanta.2007.11.002 pubmed: 18371872
Okan M, Sari E, Duman M (2017) Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens Bioelectron 88:258–264. https://doi.org/10.1016/j.bios.2016.08.047
doi: 10.1016/j.bios.2016.08.047 pubmed: 27595169

Auteurs

Liyin Bu (L)

School of Petrochemical Engineering, Changzhou University, ChangzhouJiangsu, 213164, China.

Qingyuan Song (Q)

School of Petrochemical Engineering, Changzhou University, ChangzhouJiangsu, 213164, China.

Ding Jiang (D)

School of Petrochemical Engineering, Changzhou University, ChangzhouJiangsu, 213164, China.
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, Jiangsu, China.

Xueling Shan (X)

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, Jiangsu, China.

Wenchang Wang (W)

Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213164, Jiangsu, China.

Zhidong Chen (Z)

School of Petrochemical Engineering, Changzhou University, ChangzhouJiangsu, 213164, China. zdchen@cczu.edu.cn.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Classifications MeSH