A novel molecularly imprinting polypyrrole electrochemiluminescence sensor based on MIL-101-g-C
Ciprofloxacin
ECL sensor
MIL-101-g-C3N4
MIP
Supersensitive determination
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
30 08 2023
30 08 2023
Historique:
received:
06
04
2023
accepted:
13
08
2023
medline:
1
9
2023
pubmed:
31
8
2023
entrez:
30
8
2023
Statut:
epublish
Résumé
Ciprofloxacin (CIP), a quinolone antibiotic, was rapidly and sensitively detected by integrating the molecularly imprinted polymer (MIP) with an ultra-sensitive electrochemiluminescence (ECL) method. g-C
Identifiants
pubmed: 37648847
doi: 10.1007/s00604-023-05956-z
pii: 10.1007/s00604-023-05956-z
doi:
Substances chimiques
polypyrrole
30604-81-0
Polymers
0
MIL-101
0
Metal-Organic Frameworks
0
Pyrroles
0
Ciprofloxacin
5E8K9I0O4U
Molecularly Imprinted Polymers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
373Subventions
Organisme : National Natural Science Foundation of China
ID : 22178031
Organisme : Science and Technology Project of Changzhou City
ID : CJ20210139
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Ahmad B, Parveen S, Khan RH (2006) Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromol 7(4):1350–1356. https://doi.org/10.1021/bm050996b
doi: 10.1021/bm050996b
Yuan C, He Z, Chen Q et al (2021) Selective and efficacious photoelectrochemical detection of ciprofloxacin based on the self-assembly of 2D/2D g-C
doi: 10.1016/j.apsusc.2020.148241
Chen H, Gao B, Li H (2015) Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater 282:201–207. https://doi.org/10.1016/j.jhazmat.2014.03.063
doi: 10.1016/j.jhazmat.2014.03.063
pubmed: 24755346
Gürbay A, Gonthier B, Signorini-Allibe N et al (2006) Ciprofloxacin-induced DNA damage in primary culture of rat astrocytes and protection by vitamin E. Neurotoxicology 27(1):6–10. https://doi.org/10.1016/j.neuro.2005.05.007
doi: 10.1016/j.neuro.2005.05.007
pubmed: 16122804
Liu J, Chen K, Li B et al (2012) A novel method to determine ciprofloxacin by enhanced electrochemiluminescence of Tb (bpy)
doi: 10.1039/C2AY25316J
Lu C, Liu G, Yang Z et al (2020) A ratiometric fluorometric ciprofloxacin assay based on the use of riboflavin and carbon dots. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-019-3888-5
doi: 10.1007/s00604-019-3888-5
Ma X, Gao W, Du F et al (2021) Rational design of electrochemiluminescent devices. Accounts of Chem Res 54(14):2936–2945. https://doi.org/10.1021/acs.accounts.1c00230
doi: 10.1021/acs.accounts.1c00230
Yue F, Li F, Kong Q et al (2021) Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. Sci Total Environ 762:143129. https://doi.org/10.1016/j.scitotenv.2020.143129
doi: 10.1016/j.scitotenv.2020.143129
pubmed: 33121792
Zhang J, Zhang Z, Wang Y et al (2012) Immobilized Ru(bpy)
doi: 10.1016/S1872-2040(11)60548-3
Li S, Pang C, Ma X et al (2022) Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanoparticle amplification for ultrasensitive ciprofloxacin detection. Microchem J 178:107345. https://doi.org/10.1016/j.microc.2022.107345
doi: 10.1016/j.microc.2022.107345
Qian J, Wang K, Jin Y et al (2014) Polyoxometalate@magnetic graphene as versatile immobilization matrix of Ru(bpy)
doi: 10.1016/j.bios.2014.02.005
pubmed: 24583685
Liang R, Yu L, Tong Y et al (2018) An ultratrace assay of arsenite based on the synergistic quenching effect of Ru(bpy)
doi: 10.1039/c8cc08353c
Deng Y, Tang L, Zeng G et al (2017) Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C
doi: 10.1016/j.apcatb.2016.10.046
Yin J, Chen X, Chen Z (2019) Quenched electrochemiluminescence sensor of ZnO@g-C
doi: 10.1016/j.microc.2018.09.030
Chen L, Zeng X, Si P et al (2014) Gold nanoparticle-graphite-like C
doi: 10.1021/ac403635f
pubmed: 24707951
Cai G, Yan P, Zhang L et al (2021) Metal–organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 121(20):12278–12326. https://doi.org/10.1021/acs.chemrev.1c00243
doi: 10.1021/acs.chemrev.1c00243
pubmed: 34280313
Huang P, Yao L, Chang Q et al (2022) Room-temperature preparation of highly efficient NH
doi: 10.1016/j.chemosphere.2021.133026
pubmed: 34822869
Liu Z, He W, Zhang Q et al (2021) Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega 6(7):4597–4608. https://doi.org/10.1021/acsomega.0c05091
doi: 10.1021/acsomega.0c05091
pubmed: 33644567
pmcid: 7905816
Huo Q, Liu G, Sun H et al (2021) CeO
doi: 10.1016/j.cej.2021.130036
Fang J, Li J, Feng R et al (2021) Dual-quenching electrochemiluminescence system based on novel acceptor CoOOH@Au NPs for early detection of procalcitonin. Sensor Actuat B-Chem 332:129544. https://doi.org/10.1016/j.snb.2021.129544
doi: 10.1016/j.snb.2021.129544
Ai Z, Zhao M, Han D et al (2021) An “on-off” electrochemiluminescence immunosensor for PIVKA-II detection based on the dual quenching of CeO
doi: 10.1016/j.bios.2021.113059
pubmed: 33561664
Wang X, Zhu K, Zhu J et al (2021) Photonic crystal of polystyrene nanomembrane: Signal amplification and low triggered potential electrochemiluminescence for tetracycline detection. Anal Chem 93(5):2959–2967. https://doi.org/10.1021/acs.analchem.0c04613
doi: 10.1021/acs.analchem.0c04613
pubmed: 33506679
Zhang R, Zhan J, Xu J et al (2020) Application of a novel electrochemiluminescence sensor based on magnetic glassy carbon electrode modified with molecularly imprinted polymers for sensitive monitoring of bisphenol A in seawater and fish samples. Sensor Actuat B-Chem 317:128237. https://doi.org/10.1016/j.snb.2020.128237
doi: 10.1016/j.snb.2020.128237
Yang B, Fu C, Li J et al (2018) Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. TrAC Trend Anal Chem 105:52–67. https://doi.org/10.1016/j.trac.2018.04.011
doi: 10.1016/j.trac.2018.04.011
Jin X, Fang G, Pan M et al (2018) A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol. Biosens Bioelectron 102:357–364. https://doi.org/10.1016/j.bios.2017.11.016
doi: 10.1016/j.bios.2017.11.016
pubmed: 29172144
Wang Y, Sun X, Cai L et al (2022) A “signal on/off” biomimetic electrochemiluminescence sensor using titanium carbide nanodots as co-reaction accelerator for ultra-sensitive detection of ciprofloxacin. Anal Chim Acta 1206:339690. https://doi.org/10.1016/j.aca.2022.339690
doi: 10.1016/j.aca.2022.339690
pubmed: 35473881
Rezaei B, Boroujeni MK, Ensafi AA (2014) A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol-gel@gold nanoparticles/pencil graphite electrode. Electrochim Acta 123:332–339. https://doi.org/10.1016/j.electacta.2014.01.056
doi: 10.1016/j.electacta.2014.01.056
Mazouz Z, Mokni M, Fourati N et al (2020) Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosens Bioelectron 151:111978. https://doi.org/10.1016/j.bios.2019.111978
doi: 10.1016/j.bios.2019.111978
pubmed: 31999585
Shi H, Li C, Wang L et al (2023) Efficient photocatalytic degradation of ammonia nitrogen by Z-scheme NH
doi: 10.1016/j.jallcom.2022.167815
Wu Q, Tian L, Shan X et al (2022) An electrochemiluminescence sensor for sensitive detection of malathion based on g-C
doi: 10.1007/s00604-022-05517-w
Lin Z, Li P, Zheng D et al (2023) Highly efficient synthesis of CeO
doi: 10.1016/j.microc.2023.108588
Lu Q, Zhang J, Liu X et al (2014) Enhanced electrochemiluminescence sensor for detecting dopamine based on gold nanoflower@graphitic carbon nitride polymer nanosheet–polyaniline hybrids. Analyst 139(24):6556–6562. https://doi.org/10.1039/c4an01595a
doi: 10.1039/c4an01595a
pubmed: 25356445
Bu L, Chen X, Song Q et al (2022) Supersensitive detection of chloramphenicol with an EIS method based on molecularly imprinted polypyrrole at UiO-66 and CDs modified electrode. Microchem J 179:107459. https://doi.org/10.1016/j.microc.2022.107459
doi: 10.1016/j.microc.2022.107459
Zhang Y, Du X, Wei M et al (2023) Self-powered photoelectrochemical aptasensor for sensitive detection of Microcystin-RR by integrating TiO
doi: 10.1016/j.aca.2022.340645
pubmed: 36464455
Shan J, Li R, Yan K et al (2016) In situ anodic stripping of Cd(II) from CdS quantum dots for electrochemical sensing of ciprofloxacin. Sens Actuat B-Chem 237:75–80. https://doi.org/10.1016/j.snb.2016.06.066
doi: 10.1016/j.snb.2016.06.066
Fotouhi L, Alahyari M (2010) Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloid Surface B 81(1):110–114. https://doi.org/10.1016/j.colsurfb.2011.01.020
doi: 10.1016/j.colsurfb.2011.01.020
Zhang S, Wei S (2007) Electrochemical determination of ciprofloxacin based on the enhancement effect of sodium dodecyl benzene sulfonate. B Korean Chem Soc 28(4):543–546. https://doi.org/10.5012/bkcs.2007.28.4.543
doi: 10.5012/bkcs.2007.28.4.543
Shan J, Liu Y, Li R et al (2015) Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd(II) on graphene-modified electrode. J Electroanal Chem 738:123–129. https://doi.org/10.1016/j.jelechem.2014.11.031
doi: 10.1016/j.jelechem.2014.11.031
Torriero AA, Ruiz Díaz JJ, Salinas E et al (2006) Enzymatic rotating biosensor for ciprofloxacin determination. Talanta 69(3):691–699. https://doi.org/10.1016/j.talanta.2005.11.005
doi: 10.1016/j.talanta.2005.11.005
pubmed: 18970624
Ensafi AA, Taei M, Khayamian T et al (2010) Simultaneous voltammetric determination of enrofloxacin and ciprofloxacin in urine and plasma using multiwall carbon nanotubes modified glassy carbon electrode by least-squares support vector machines. Anal Sci 26(7):803–808. https://doi.org/10.2116/analsci.26.803
doi: 10.2116/analsci.26.803
pubmed: 20631443
Yan H, Row KH, Yang G (2008) Water-compatible molecularly imprinted polymers for selective extraction of ciprofloxacin from human urine. Talanta 75(1):227–232. https://doi.org/10.1016/j.talanta.2007.11.002
doi: 10.1016/j.talanta.2007.11.002
pubmed: 18371872
Okan M, Sari E, Duman M (2017) Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens Bioelectron 88:258–264. https://doi.org/10.1016/j.bios.2016.08.047
doi: 10.1016/j.bios.2016.08.047
pubmed: 27595169