Meta-analysis of the anti-oxidative and anti-inflammatory effects of hypoglycaemic plant-derived medicines.
Clinical trial
Inflammation
Oxidative stress
Plant-derived
Systematic review
Type 2 diabetes mellitus
Journal
Inflammopharmacology
ISSN: 1568-5608
Titre abrégé: Inflammopharmacology
Pays: Switzerland
ID NLM: 9112626
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
04
05
2023
accepted:
31
07
2023
medline:
26
9
2023
pubmed:
4
9
2023
entrez:
2
9
2023
Statut:
ppublish
Résumé
The pivotal role of oxidative stress and inflammation in the pathophysiology of type 2 diabetes mellitus (T2DM) has been firmly established. However, the evidence concerning hypoglycaemic medicinal plants' antioxidant and anti-inflammatory effects remains inconclusive due to inconsistencies in prior studies. To address this gap, our study aims to perform a comprehensive systematic review and meta-analysis of randomized controlled trials (RCTs) to consolidate previous research findings in this field. We conducted a comprehensive search in the PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases to identify relevant English randomized controlled trials (RCTs). Our study adhered to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. All eligible studies that evaluated concurrently the antioxidative and anti-inflammatory effects of hypoglycaemic plant-derived supplements on type 2 diabetes mellitus (T2DM) were included in the meta-analysis. The meta-analysis itself was carried out using both fixed and random effects models to synthesize the findings from the selected studies. Our study included 47 trials with a total of 2636 participants, both male and female, aged between 20 and 79 years, diagnosed with prediabetes, type 2 diabetes mellitus (T2DM), or metabolic syndrome. The meta-analysis revealed that plant-derived treatments, compared to placebos or other medicines, significantly improved oxidative stress (SMD = - 0.36, 95% CI - 0.64 to - 0.09), inflammation (SMD = - 0.47, 95% CI - 0.63 to - 0.31), total antioxidant capacity (SMD = 0.46, 95% CI 0.16-0.75), and antioxidant enzyme activity (SMD = 1.80, 95% CI 1.26-2.33). The meta-regression analysis showed that treatment duration exceeding 8 weeks significantly impacted the heterogeneity of the oxidative stress data. Several hypoglycaemic plant-based treatments appear to positively affect T2DM patients by concurrently lowering oxidative stress and inflammatory indicators and boosting antioxidant enzyme activity. PROSPERO ID: CRD42021226147.
Sections du résumé
BACKGROUND
BACKGROUND
The pivotal role of oxidative stress and inflammation in the pathophysiology of type 2 diabetes mellitus (T2DM) has been firmly established. However, the evidence concerning hypoglycaemic medicinal plants' antioxidant and anti-inflammatory effects remains inconclusive due to inconsistencies in prior studies. To address this gap, our study aims to perform a comprehensive systematic review and meta-analysis of randomized controlled trials (RCTs) to consolidate previous research findings in this field.
METHODS
METHODS
We conducted a comprehensive search in the PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases to identify relevant English randomized controlled trials (RCTs). Our study adhered to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. All eligible studies that evaluated concurrently the antioxidative and anti-inflammatory effects of hypoglycaemic plant-derived supplements on type 2 diabetes mellitus (T2DM) were included in the meta-analysis. The meta-analysis itself was carried out using both fixed and random effects models to synthesize the findings from the selected studies.
RESULTS
RESULTS
Our study included 47 trials with a total of 2636 participants, both male and female, aged between 20 and 79 years, diagnosed with prediabetes, type 2 diabetes mellitus (T2DM), or metabolic syndrome. The meta-analysis revealed that plant-derived treatments, compared to placebos or other medicines, significantly improved oxidative stress (SMD = - 0.36, 95% CI - 0.64 to - 0.09), inflammation (SMD = - 0.47, 95% CI - 0.63 to - 0.31), total antioxidant capacity (SMD = 0.46, 95% CI 0.16-0.75), and antioxidant enzyme activity (SMD = 1.80, 95% CI 1.26-2.33). The meta-regression analysis showed that treatment duration exceeding 8 weeks significantly impacted the heterogeneity of the oxidative stress data.
CONCLUSIONS
CONCLUSIONS
Several hypoglycaemic plant-based treatments appear to positively affect T2DM patients by concurrently lowering oxidative stress and inflammatory indicators and boosting antioxidant enzyme activity.
CLINICAL TRAIL REGISTRY
UNASSIGNED
PROSPERO ID: CRD42021226147.
Identifiants
pubmed: 37658968
doi: 10.1007/s10787-023-01315-9
pii: 10.1007/s10787-023-01315-9
doi:
Substances chimiques
Antioxidants
0
Hypoglycemic Agents
0
Anti-Inflammatory Agents
0
Types de publication
Meta-Analysis
Systematic Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2521-2539Subventions
Organisme : Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences
ID : 1399-01-97-991
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Adab Z, Eghtesadi S, Vafa MR et al (2019) Effect of turmeric on glycemic status, lipid profile, hs-CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients. Phytother Res 33(4):1173–1181
pubmed: 30859660
doi: 10.1002/ptr.6312
Ahmad R, AlLehaibi LH, AlSuwaidan HN et al (2021) Evaluation of clinical trials for natural products used in diabetes: an evidence-based systemic literature review. Medicine 100(16):e25641
pubmed: 33879744
pmcid: 8078398
doi: 10.1097/MD.0000000000025641
Alnajjar M, Kumar Barik S, Bestwick C et al (2020) Anthocyanin-enriched bilberry extract attenuates glycaemic response in overweight volunteers without changes in insulin. J Funct Foods 64:103597
doi: 10.1016/j.jff.2019.103597
Asadi A, Shidfar F, Safari M et al (2019) Efficacy of Melissa officinalis L. (lemon balm) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: a randomized, double-blind, clinical trial. Phytother Res 33(3):651–659
pubmed: 30548118
doi: 10.1002/ptr.6254
Atkin M, Laight D, Cummings MH (2016) The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress, and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double-blind randomized placebo controlled trial. J Diabetes Complicat 30(4):723–727
doi: 10.1016/j.jdiacomp.2016.01.003
Azimi P, Ghiasvand R, Feizi A et al (2014) Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev Diabet Stud 11(3–4):258–266
pubmed: 26177486
doi: 10.1900/RDS.2014.11.258
Bailey CJ (2017) Metformin: historical overview. Diabetologia 60(9):1566–1576
pubmed: 28776081
doi: 10.1007/s00125-017-4318-z
Bańkowski S, Petr M, Rozpara M et al (2022) Effect of 6-week curcumin supplementation on aerobic capacity, antioxidant status and sirtuin 3 level in middle-aged amateur long-distance runners. Redox Rep 27(1):186–192
pubmed: 36125053
pmcid: 9518241
doi: 10.1080/13510002.2022.2123882
Basu A, Newman ED, Bryant AL et al (2013) Pomegranate polyphenols lower lipid peroxidation in adults with type 2 diabetes but have no effects in healthy volunteers: a pilot study. J Nutr Metab 2013:1
doi: 10.1155/2013/708381
Bazyar H, Hosseini SA, Saradar S et al (2021) Effects of epigallocatechin-3-gallate of Camellia sinensis leaves on blood pressure, lipid profile, atherogenic index of plasma and some inflammatory and antioxidant markers in type 2 diabetes mellitus patients: a clinical trial. J Complementary Integr Med 18(2):405–411
doi: 10.1515/jcim-2020-0090
Bengmark S (2006) Curcumin, an atoxic antioxidant and natural NfκB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. J Parenter Enter Nutr 30(1):45–51
doi: 10.1177/014860710603000145
Chan JC, Lim LL, Wareham NJ, Shaw JE, Orchard TJ, Zhang P et al (2020) The lancet commission on diabetes: using data to transform diabetes care and patient lives. Lancet 396(10267):2019–2082
pubmed: 33189186
doi: 10.1016/S0140-6736(20)32374-6
Chan SW, Chu TTW, Choi SW, Benzie IFF, Tomlinson B (2021) Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytother Res 35(6):3236–3245
pubmed: 33599340
doi: 10.1002/ptr.7038
Chandra K, Jain V, Jabin A et al (2020) Effect of Cichorium intybus seeds supplementation on the markers of glycemic control, oxidative stress, inflammation, and lipid profile in type 2 diabetes mellitus: a randomized, double-blind placebo study. Phytother Res 34(7):1609–1618
pubmed: 32026537
doi: 10.1002/ptr.6624
Dalli E, Colomer E, Tormos MC et al (2011) Crataegus laevigata decreases neutrophil elastase and has hypolipidemic effect: a randomized, double-blind, placebo-controlled trial. Phytomedicine 18(8–9):769–775
pubmed: 21242072
doi: 10.1016/j.phymed.2010.11.011
Darmian MA, Hoseini R, Amiri E, Golshani S (2022) Downregulated hs-CRP and MAD, upregulated GSH and TAC, and improved metabolic status following combined exercise and turmeric supplementation: a clinical trial in middle-aged women with hyperlipidemic type 2 diabetes. J Diabetes Metab Disord 21(1):275–283
pubmed: 35106289
pmcid: 8795726
doi: 10.1007/s40200-022-00970-z
Derosa G, Maffioli P, Simental-Mendía LE, Bo S, Sahebkar A (2016) Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 111:394–404
pubmed: 27392742
doi: 10.1016/j.phrs.2016.07.004
Ebrahimi F, Sahebkar A, Aryaeian N et al (2019) Effects of saffron supplementation on inflammation and metabolic responses in type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial. Diabetes Metab Syndr Obes 12:2107
pubmed: 31686882
pmcid: 6798815
doi: 10.2147/DMSO.S216666
Ebrahimpour Koujan S, Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M (2015) Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: a randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine 22(2):290–296
pubmed: 25765835
doi: 10.1016/j.phymed.2014.12.010
Fallahzadeh MK, Dormanesh B, Sagheb MM et al (2012) Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: a randomized, double-blind, placebo-controlled trial. Am J Kidney Dis 60(6):896–903
pubmed: 22770926
doi: 10.1053/j.ajkd.2012.06.005
Ghafouri A, Hajiluian G, Karegar SJ et al (2020) The effect of aqueous, ethanolic extracts of Rheum ribes on insulin sensitivity, inflammation, oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. J Herbal Med 24:100389
doi: 10.1016/j.hermed.2020.100389
Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070
pubmed: 21030723
pmcid: 2996922
doi: 10.1161/CIRCRESAHA.110.223545
Gorabi AM, Razi B, Aslani S et al (2021) Effect of curcumin on proinflammatory cytokines: a meta-analysis of randomized controlled trials. Cytokine 143:155541
pubmed: 33934954
doi: 10.1016/j.cyto.2021.155541
Grabež M, Škrbić R, Stojiljković MP et al (2022) A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus. Rev Cardiovasc Med 23(2):57
pubmed: 35229548
doi: 10.31083/j.rcm2302057
Hadi S, Mirmiran P, Daryabeygi-Khotbesara R, Hadi V (2018) Effect of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress among people with type 2 diabetes mellitus: a randomized, double-blind, placebo controlled trial. Prog Nutr 20:127–133
Haidari F, Zakerkish M, Borazjani F, Ahmadi Angali K, Amoochi Foroushani G (2020) The effects of Anethum graveolens (dill) powder supplementation on clinical and metabolic status in patients with type 2 diabetes. Trials. https://doi.org/10.1186/s13063-020-04401-3
doi: 10.1186/s13063-020-04401-3
pubmed: 32680548
pmcid: 7366891
Hemmatabadi M, Abdollahi M, Bakhshayeshi S et al (2009) Benefits of Semelil (ANGIPARS™) on oxidant-antioxidant balance in diabetic patients; a randomized, double-blind placebo controlled clinical trial. Daru 17(SUPPL. 1):50–55
Higgins JP, Altman DG, Gøtzsche PC et al (2011) The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928
pubmed: 22008217
pmcid: 3196245
doi: 10.1136/bmj.d5928
Higgins JP, Thomas J, Chandler J et al (2019) Cochrane handbook for systematic reviews of interventions, 2nd edn. John Wiley & Sons, Chichester (UK)
doi: 10.1002/9781119536604
Howick J, Chalmers I, Glasziou P, et al (2022) OCEBM Levels of Evidence Working Group. The Oxford 2011 levels of evidence. Oxford Centre for Evidence-Based Medicine Available at: http://www.cebmnet/indexaspx?o=5653 . accessed: 2022. 2011
Ioannidis JP (2008) Interpretation of tests of heterogeneity and bias in meta-analysis. J Eval Clin Pract 14(5):951–957
pubmed: 19018930
doi: 10.1111/j.1365-2753.2008.00986.x
Javid AZ, Bazyar H, Gholinezhad H et al (2019) The effects of ginger supplementation on inflammatory, antioxidant, and periodontal parameters in type 2 diabetes mellitus patients with chronic periodontitis under non-surgical periodontal therapy. A double-blind, placebo-controlled trial. Diabetes Metab Syndr Obes Targets Ther 12:1751–1761
doi: 10.2147/DMSO.S214333
Kanellos PT, Kaliora AC, Tentolouris NK et al (2014) A pilot, randomized controlled trial to examine the health outcomes of raisin consumption in patients with diabetes. Nutrition 30(3):358–364
pubmed: 24262513
doi: 10.1016/j.nut.2013.07.020
Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M (2009) Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: a double-blind randomized placebo-controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 26(5):526–531
pubmed: 19646193
doi: 10.1111/j.1464-5491.2009.02727.x
Kazemi S, Yaghooblou F, Siassi F et al (2017) Cardamom supplementation improves inflammatory and oxidative stress biomarkers in hyperlipidemic, overweight, and obese pre-diabetic women: a randomized double-blind clinical trial. J Sci Food Agric 97(15):5296–5301
pubmed: 28480505
doi: 10.1002/jsfa.8414
Kempf K, Herder C, Erlund I et al (2010) Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 91(4):950–957
pubmed: 20181814
doi: 10.3945/ajcn.2009.28548
Kim HJ, Yoon KH, Kang MJ et al (2012) A six-month supplementation of mulberry, Korean red ginseng, and Banaba decreases biomarkers of systemic low-grade inflammation in subjects with impaired glucose tolerance and type 2 diabetes. Evid Based Complement Alternat Med 2012:735191
pubmed: 22474520
pmcid: 3303547
doi: 10.1155/2012/735191
Kim H, Simbo SY, Fang C et al (2018) Açaí (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct 9(6):3097–3103
pubmed: 29850709
doi: 10.1039/C8FO00595H
Kooshki A, Tofighiyan T, Rastgoo N, Rakhshani MH, Miri M (2020) Effect of Nigella sativa oil supplement on risk factors for cardiovascular diseases in patients with type 2 diabetes mellitus. Phytother Res 34(10):2706–2711
pubmed: 32510754
doi: 10.1002/ptr.6707
Legiawati L, Bramono K, Indriatmi W et al (2020) Oral and topical Centella asiatica in type 2 diabetes mellitus patients with dry skin: a three-arm prospective randomized double-blind controlled trial. Evid Based Complement Alternat Med 2020:1
doi: 10.1155/2020/7253560
Maithili Karpaga Selvi N, Sridhar MG, Swaminathan RP, Sripradha R (2015) Efficacy of turmeric as adjuvant therapy in type 2 diabetic patients. Indian J Clin Biochem 30(2):180–186
pubmed: 25883426
doi: 10.1007/s12291-014-0436-2
Mao Q-Q, Xu X-Y, Cao S-Y et al (2019) Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 8(6):185
pubmed: 31151279
pmcid: 6616534
doi: 10.3390/foods8060185
Mohammad A, Falahi E, Yusof B-NM et al (2021) The effects of the ginger supplements on inflammatory parameters in type 2 diabetes patients: a systematic review and meta-analysis of randomised controlled trials. Clin Nutr ESPEN 46:66–72
pubmed: 34857250
doi: 10.1016/j.clnesp.2021.10.013
Musolino V, Gliozzi M, Bombardelli E et al (2020) The synergistic effect of Citrus bergamia and Cynara cardunculus extracts on vascular inflammation and oxidative stress in non-alcoholic fatty liver disease. J Tradit Complement Med 10(3):268–274
pubmed: 32670822
pmcid: 7340872
doi: 10.1016/j.jtcme.2020.02.004
Nair AR, Mariappan N, Stull AJ, Francis J (2017) Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct 8(11):4118–4128
pubmed: 29019365
doi: 10.1039/C7FO00815E
Neyestani TR, Shariatzade N, Kalayi A et al (2010) Regular daily intake of black tea improves oxidative stress biomarkers and decreases serum C-reactive protein levels in type 2 diabetic patients. Ann Nutr Metab 57(1):40–49
pubmed: 20668372
doi: 10.1159/000312666
Nieto G (2020) How are medicinal plants useful when added to foods? Medicines (Basel) 7:58. https://doi.org/10.3390/medicines7090058
doi: 10.3390/medicines7090058
pubmed: 32937755
Nigam V, Nambiar VS (2019) Aegle marmelos leaf juice as a complementary therapy to control type 2 diabetes—randomised controlled trial in Gujarat. India Adv Integr Med 6(1):11–22
doi: 10.1016/j.aimed.2018.03.002
Oremus M, Wolfson C, Perrault A, Demers L, Momoli F, Moride Y (2001) Interrater reliability of the modified Jadad quality scale for systematic reviews of Alzheimer’s disease drug trials. Dement Geriatr Cogn Disord 12(3):232–236
pubmed: 11244218
doi: 10.1159/000051263
Organization WH (2013) WHO traditional medicine strategy: 2014–2023: World Health Organization
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10(1):1–11
doi: 10.1186/s13643-021-01626-4
Park K, Kim Y, Kim J et al (2020) Supplementation with Korean red ginseng improves current perception threshold in Korean type 2 diabetes patients: a randomized, double-blind placebo-controlled trial. J Diabetes Res 2020:5295328
pubmed: 32025522
pmcid: 6991165
doi: 10.1155/2020/5295328
Pingali U, Ali MA, Gundagani S, Nutalapati C (2020a) Evaluation of the effect of an aqueous extract of Azadirachta indica (Neem) leaves and twigs on glycemic control, endothelial dysfunction and systemic inflammation in subjects with type 2 diabetes mellitus—a randomized, double-blind, placebo-controlled clinical study. Diabetes Metab Syndr Obes 13:4401–4412
pubmed: 33244247
pmcid: 7683773
doi: 10.2147/DMSO.S274378
Pingali U, Sukumaran D, Nutalapati C (2020b) Effect of an aqueous extract of Terminalia chebula on endothelial dysfunction, systemic inflammation, and lipid profile in type 2 diabetes mellitus: a randomized double-blind, placebo-controlled clinical study. Phytother Res 34(12):3226–3235
pubmed: 32618037
doi: 10.1002/ptr.6771
Ricklefs-Johnson K, Johnston CS, Sweazea KL (2017) Ground flaxseed increased nitric oxide levels in adults with type 2 diabetes: a randomized comparative effectiveness study of supplemental flaxseed and psyllium fiber. Obes Med 5:16–24
doi: 10.1016/j.obmed.2017.01.002
Sakhaei R, Nadjarzadeh A, Esmaeili A et al (2021) Cardiovascular and renal effects of Hibiscus sabdariffa Linnaeus. In patients with diabetic nephropathy: a randomized, double-blind, controlled trial. J Nutr Food Secur 6(2):116–26
Sanaei M, Ebrahimi M, Banazadeh Z et al (2015) Consequences of Aphanizomenon flos-aquae (AFA) extract (Stemtech(TM)) on metabolic profile of patients with type 2 diabetes. J Diabetes Metab Disord. https://doi.org/10.1186/s40200-015-0177-7
doi: 10.1186/s40200-015-0177-7
pubmed: 26131436
pmcid: 4485343
Shahbazian H, Aleali AM, Amani R et al (2019) Effects of saffron on homocysteine, and antioxidant and inflammatory biomarkers levels in patients with type 2 diabetes mellitus: a randomized double-blind clinical trial. Avic J Phytomed 9(5):436–445
Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S (2015) The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complementary Integr Med 12(2):165–170
doi: 10.1515/jcim-2014-0021
Smitha Grace S, Chandran G, Chauhan JB (2019) Terpenoids: an activator of “fuel-sensing enzyme AMPK” with special emphasis on antidiabetic activity. Plant Hum Health 2:227–244
doi: 10.1007/978-3-030-03344-6_9
Soleimani Z, Hashemdokht F, Bahmani F, Taghizadeh M, Memarzadeh MR, Asemi Z (2017) Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complicat 31(9):1394–1400
doi: 10.1016/j.jdiacomp.2017.06.010
Soltani D, Azizi B, Rahimi R, Talasaz A, Rezaeizadeh H, Vasheghani-Farahani A (2022) Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: a comprehensive review of preclinical and clinical evidence. Front Cardiovasc Med 9:990063. https://doi.org/10.3389/fcvm.2022.990063
doi: 10.3389/fcvm.2022.990063
pubmed: 36247473
pmcid: 9559844
Somanah J, Aruoma OI, Gunness TK et al (2012) Effects of a short-term supplementation of a fermented papaya preparation on biomarkers of diabetes mellitus in a randomized Mauritian population. Prev Med 54(Suppl):S90–S97
pubmed: 22330753
doi: 10.1016/j.ypmed.2012.01.014
Sun C, Zhao C, Guven EC et al (2020) Dietary polyphenols as antidiabetic agents: advances and opportunities. Food Frontiers 1(1):18–44
doi: 10.1002/fft2.15
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al (2022) IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119
doi: 10.1016/j.diabres.2021.109119
pubmed: 34879977
Taghizadeh M, Soleimani A, Bahmani F et al (2017) Metabolic response to mulberry extract supplementation in patients with diabetic nephropathy: a randomized controlled trial. Iran J Kidney Dis 11(6):438–446
pubmed: 29190604
Tavakoly R, Maracy MR, Karimifar M et al (2018) Does fenugreek (Trigonella foenum-graecum) seed improve inflammation, and oxidative stress in patients with type 2 diabetes mellitus? A parallel group randomized clinical trial. Eur J Integr Med 18:13–17
doi: 10.1016/j.eujim.2018.01.005
Thomford NE, Senthebane DA, Rowe A et al (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19(6):1578
pubmed: 29799486
pmcid: 6032166
doi: 10.3390/ijms19061578
Usharani P, Fatima N, Muralidhar N (2013) Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab Syndr Obes 6:275–284
pubmed: 23935377
pmcid: 3735284
Usharani P, Kishan PV, Fatima N, Uday KC (2014) A comparative study to evaluate the effect of highly standardised aqueous extracts of Phyllanthus emblica, Withania somnifera and their combination on endothelial dysfunction and biomarkers in patients with type II diabetes mellitus. Int J Pharm Sci Res 5(7):2687–2697
Vassalle C, Gaggini M (2022) Type 2 diabetes and oxidative stress and inflammation: pathophysiological mechanisms and possible therapeutic options. Antioxidants (Basel) 11(5):953. https://doi.org/10.3390/antiox11050953
doi: 10.3390/antiox11050953
pubmed: 35624817
Yuan H, Ma Q, Cui H et al (2017) How can synergism of traditional medicines benefit from network pharmacology? Molecules 22(7):1135
pubmed: 28686181
pmcid: 6152294
doi: 10.3390/molecules22071135
Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42
doi: 10.1016/j.cofs.2016.02.002