Improved pearl millet genomes representing the global heterotic pool offer a framework for molecular breeding applications.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
04 09 2023
Historique:
received: 17 02 2023
accepted: 18 08 2023
medline: 6 9 2023
pubmed: 5 9 2023
entrez: 4 9 2023
Statut: epublish

Résumé

High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D

Identifiants

pubmed: 37667032
doi: 10.1038/s42003-023-05258-3
pii: 10.1038/s42003-023-05258-3
pmc: PMC10477261
doi:

Banques de données

figshare
['10.6084/m9.figshare.23932707.v1']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

902

Informations de copyright

© 2023. Springer Nature Limited.

Références

Yadav, O. P. et al. Genetic gains in pearl millet in india: insights into historic breeding strategies and future perspective. Front. Plant Sci. 12, 645038 (2021).
Sanjana Reddy, P. et al. Performance and stability of pearl millet varieties for grain yield and micronutrients in arid and semi-arid regions of India. Front. Plant Sci. 12, 670201 (2021).
Satyavathi, C. T., Ambawat, S., Khandelwal, V. & Srivastava, R. K. Pearl Millet: A climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front. Plant Sci. 12, 659938 (2021).
Varshney, R. K. et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 35, 969–976 (2017).
pubmed: 28922347 pmcid: 6871012
Burton, G. W. Cytoplasmic male-sterility in pearl millet (Pennisetum glaucum) (L.) R. Br.1. Agron. J. 50, 230–230 (1958).
Bhat, J. A., Yu, D., Bohra, A., Ganie, S. A. & Varshney, R. K. Features and applications of haplotypes in crop breeding. Commun. Biol. 4, 1–12 (2021).
Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).
pubmed: 34353948 pmcid: 8733867
Ou, S. et al. Effect of sequence depth and length in long-read assembly of the maize inbred NC358. Nat. Commun. 11, 2288 (2020).
pubmed: 32385271 pmcid: 7211024
Liu, H., Yang, Y., Liu, D., Wang, X. & Zhang, L. Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat. BMC Plant Biol. 20, 259 (2020).
pubmed: 32503498 pmcid: 7275420
Cubry, P., Vigouroux, Y. & François, O. The empirical distribution of singletons for geographic samples of DNA sequences. Front. Genet. 8, 139 (2017).
Xiang, X., Wu, Y., Planta, J., Messing, J. & Leustek, T. Overexpression of serine acetyltransferase in maize leaves increases seed-specific methionine-rich zeins. Plant Biotechnol. J. 16, 1057–1067 (2018).
pubmed: 29044890
Anitha, S., Govindaraj, M. & Kane-Potaka, J. Balanced amino acid and higher micronutrients in millets complements legumes for improved human dietary nutrition. Cereal Chem. 97, 74–84 (2020).
Mandal, M. K. et al. Glycerol-3-phosphate and systemic immunity. Plant Signal. Behav. 6, 1871–1874 (2011).
pubmed: 22067992 pmcid: 3343732
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).
pubmed: 34320186 pmcid: 8476166
Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 12, 491 (2011).
Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR assembly index (LAI). Nucleic Acids Res. 46, e126 (2018).
pubmed: 30107434 pmcid: 6265445
Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).
pubmed: 28605751 pmcid: 7052699
Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).
pubmed: 16093699
Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).
pubmed: 19965430
Ouyang, S. et al. The TIGR Rice genome annotation resource: improvements and new features. Nucleic Acids Res. 35, D883–D887 (2007).
pubmed: 17145706
Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).
pubmed: 19189423
Zhang, G. et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 30, 549–554 (2012).
pubmed: 22580950
Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).
pubmed: 21368132 pmcid: 3053962
Chelpuri, D. et al. Mapping quantitative trait loci (QTLs) associated with resistance to major pathotype-isolates of pearl millet downy mildew pathogen. Eur. J. Plant Pathol. 154, 983–994 (2019).
Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017).
pubmed: 28538728
Wang, S. & Gao, L.-Z. Complete chloroplast genome sequence of green foxtail (Setaria viridis), a promising model system for C4 photosynthesis. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 3707–3708 (2016).
pubmed: 26305916
Soderlund, C. et al. Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLOS Genet. 5, e1000740 (2009).
pubmed: 19936069 pmcid: 2774520
Mayer, M. et al. Discovery of beneficial haplotypes for complex traits in maize landraces. Nat. Commun. 11, 4954 (2020).
pubmed: 33009396 pmcid: 7532167
Wang, W. et al. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat. Commun. 12, 6263 (2021).
pubmed: 34741017 pmcid: 8571336
Kamm, A., Schmidt, T. & Heslop-Harrison, J. S. Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum. Mol. Gen. Genet. 244, 420–425 (1994).
pubmed: 7521511
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinforma. Oxf. Engl. 34, 3094–3100 (2018).
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
pubmed: 35357919 pmcid: 9186530
Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in drosophila genomic DNA. Genome Res. 10, 516–522 (2000).
pubmed: 10779491 pmcid: 310882
Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Res. 9, ISCB Comm J-304 (2020).
pubmed: 32489650 pmcid: 7222033
Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).
pubmed: 29233850
Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinforma. Oxf. Engl. 24, 637–644 (2008).
Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).
pubmed: 15728110
Haas, B. J. et al. Improving the arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
pubmed: 14500829 pmcid: 206470
Gotoh, O. Direct mapping and alignment of protein sequences onto genomic sequence. Bioinforma. Oxf. Engl. 24, 2438–2444 (2008).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
pubmed: 18190707 pmcid: 2395244
Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).
pubmed: 34417604 pmcid: 8450103
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinforma. Oxf. Engl. 29, 2933–2935 (2013).
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
pubmed: 9254694 pmcid: 146917
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinforma. Oxf. Engl. 30, 1236–1240 (2014).
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. Plos One 6, e21800 (2011).
pubmed: 21789182 pmcid: 3138752
Eberhardt, R. Y. et al. AntiFam: a tool to help identify spurious ORFs in protein annotation. Database 2012, bas003 (2012).
pubmed: 22434837 pmcid: 3308159
Geib, S. M. et al. Genome annotation generator: a simple tool for generating and correcting WGS annotation tables for NCBI submission. GigaScience 7, 1–5 (2018).
pubmed: 29635297
Dainat, J. et al. NBISweden/AGAT: AGAT-v1.0.0. https://doi.org/10.5281/zenodo.7255559 (2022).
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).
pubmed: 22217600 pmcid: 3326336
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
pubmed: 29035372
Pracana, R., Priyam, A., Levantis, I., Nichols, R. A. & Wurm, Y. The fire ant social chromosome supergene variant Sb shows low diversity but high divergence from SB. Mol. Ecol. 26, 2864–2879 (2017).
pubmed: 28220980 pmcid: 5485014
Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).
pubmed: 31842948 pmcid: 6913012
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381
Roberts, A. et al. Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. Bioinforma. Oxf. Engl. 23, i401–i407 (2007).
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One 9, e112963 (2014).
pubmed: 25409509 pmcid: 4237348
Schultz, A.-K. et al. A jumping profile hidden Markov model and applications to recombination sites in HIV and HCV genomes. BMC Bioinforma. 7, 265 (2006).
Schultz, A.-K. et al. jpHMM: improving the reliability of recombination prediction in HIV-1. Nucleic Acids Res. 37, W647–W651 (2009).
pubmed: 19443440 pmcid: 2703979
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193
Baum, B. R. PHYLIP: Phylogeny Inference Package. Version 3.2. Joel Felsenstein. Q. Rev. Biol. 64, 539–541 (1989).
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
pubmed: 16862161
Wang, J. & Zhang, Z. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 19, 629–640 (2021).

Auteurs

Punna Ramu (P)

Corteva Agriscience, Hyderabad, Telangana, India.

Rakesh K Srivastava (RK)

International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India. r.k.srivastava@CGIAR.ORG.

Abhijit Sanyal (A)

Corteva Agriscience, Hyderabad, Telangana, India.

Kevin Fengler (K)

Corteva Agriscience, Johnston, IA, 50131, USA.

Jun Cao (J)

Corteva Agriscience, Johnston, IA, 50131, USA.

Yun Zhang (Y)

Corteva Agriscience, Johnston, IA, 50131, USA.

Mitali Nimkar (M)

Corteva Agriscience, Hyderabad, Telangana, India.

Justin Gerke (J)

Corteva Agriscience, Johnston, IA, 50131, USA.

Sriram Shreedharan (S)

Corteva Agriscience, Johnston, IA, 50131, USA.

Victor Llaca (V)

Corteva Agriscience, Johnston, IA, 50131, USA.

Gregory May (G)

Corteva Agriscience, Johnston, IA, 50131, USA.

Brooke Peterson-Burch (B)

Corteva Agriscience, Johnston, IA, 50131, USA.

Haining Lin (H)

Corteva Agriscience, Johnston, IA, 50131, USA.
Moderna, 200 Technology Square, Cambridge, MA, 02139, USA.

Matthew King (M)

Corteva Agriscience, Johnston, IA, 50131, USA.
Natera Inc, San Carlos, CA, 94070, USA.

Sayan Das (S)

Corteva Agriscience, Hyderabad, Telangana, India.

Vaid Bhupesh (V)

Corteva Agriscience, Hyderabad, Telangana, India.

Ajin Mandaokar (A)

Corteva Agriscience, Hyderabad, Telangana, India.

Karunakaran Maruthachalam (K)

Corteva Agriscience, Hyderabad, Telangana, India.

Pobbathi Krishnamurthy (P)

Corteva Agriscience, Hyderabad, Telangana, India.

Harish Gandhi (H)

International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India.
International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya.

Abhishek Rathore (A)

International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India.
International Maize and Wheat Improvement Center (CIMMYT), Hyderabad, India.

Rajeev Gupta (R)

International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India.
Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA.

Annapurna Chitikineni (A)

International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India.
Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.

Prasad Bajaj (P)

International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India.

S K Gupta (SK)

International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India.

C Tara Satyavathi (CT)

Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India.

Anand Pandravada (A)

Corteva Agriscience, Hyderabad, Telangana, India.

Rajeev K Varshney (RK)

International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India. rajeev.varshney@murdoch.edu.au.
Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia. rajeev.varshney@murdoch.edu.au.

Raman Babu (R)

Corteva Agriscience, Hyderabad, Telangana, India. raman.babu@corteva.com.

Articles similaires

Humans Macular Degeneration Mendelian Randomization Analysis Life Style Genome-Wide Association Study
Zea mays Triticum China Seasons Crops, Agricultural
Humans Metabolic Syndrome Sleep Apnea, Obstructive Mendelian Randomization Analysis Gastrointestinal Diseases
Ethiopia Conservation of Natural Resources Environmental Monitoring Soil Soil Erosion

Classifications MeSH