Improved pearl millet genomes representing the global heterotic pool offer a framework for molecular breeding applications.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
04 09 2023
04 09 2023
Historique:
received:
17
02
2023
accepted:
18
08
2023
medline:
6
9
2023
pubmed:
5
9
2023
entrez:
4
9
2023
Statut:
epublish
Résumé
High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D
Identifiants
pubmed: 37667032
doi: 10.1038/s42003-023-05258-3
pii: 10.1038/s42003-023-05258-3
pmc: PMC10477261
doi:
Banques de données
figshare
['10.6084/m9.figshare.23932707.v1']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
902Informations de copyright
© 2023. Springer Nature Limited.
Références
Yadav, O. P. et al. Genetic gains in pearl millet in india: insights into historic breeding strategies and future perspective. Front. Plant Sci. 12, 645038 (2021).
Sanjana Reddy, P. et al. Performance and stability of pearl millet varieties for grain yield and micronutrients in arid and semi-arid regions of India. Front. Plant Sci. 12, 670201 (2021).
Satyavathi, C. T., Ambawat, S., Khandelwal, V. & Srivastava, R. K. Pearl Millet: A climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front. Plant Sci. 12, 659938 (2021).
Varshney, R. K. et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 35, 969–976 (2017).
pubmed: 28922347
pmcid: 6871012
Burton, G. W. Cytoplasmic male-sterility in pearl millet (Pennisetum glaucum) (L.) R. Br.1. Agron. J. 50, 230–230 (1958).
Bhat, J. A., Yu, D., Bohra, A., Ganie, S. A. & Varshney, R. K. Features and applications of haplotypes in crop breeding. Commun. Biol. 4, 1–12 (2021).
Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).
pubmed: 34353948
pmcid: 8733867
Ou, S. et al. Effect of sequence depth and length in long-read assembly of the maize inbred NC358. Nat. Commun. 11, 2288 (2020).
pubmed: 32385271
pmcid: 7211024
Liu, H., Yang, Y., Liu, D., Wang, X. & Zhang, L. Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat. BMC Plant Biol. 20, 259 (2020).
pubmed: 32503498
pmcid: 7275420
Cubry, P., Vigouroux, Y. & François, O. The empirical distribution of singletons for geographic samples of DNA sequences. Front. Genet. 8, 139 (2017).
Xiang, X., Wu, Y., Planta, J., Messing, J. & Leustek, T. Overexpression of serine acetyltransferase in maize leaves increases seed-specific methionine-rich zeins. Plant Biotechnol. J. 16, 1057–1067 (2018).
pubmed: 29044890
Anitha, S., Govindaraj, M. & Kane-Potaka, J. Balanced amino acid and higher micronutrients in millets complements legumes for improved human dietary nutrition. Cereal Chem. 97, 74–84 (2020).
Mandal, M. K. et al. Glycerol-3-phosphate and systemic immunity. Plant Signal. Behav. 6, 1871–1874 (2011).
pubmed: 22067992
pmcid: 3343732
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).
pubmed: 34320186
pmcid: 8476166
Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 12, 491 (2011).
Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR assembly index (LAI). Nucleic Acids Res. 46, e126 (2018).
pubmed: 30107434
pmcid: 6265445
Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).
pubmed: 28605751
pmcid: 7052699
Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).
pubmed: 16093699
Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).
pubmed: 19965430
Ouyang, S. et al. The TIGR Rice genome annotation resource: improvements and new features. Nucleic Acids Res. 35, D883–D887 (2007).
pubmed: 17145706
Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).
pubmed: 19189423
Zhang, G. et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 30, 549–554 (2012).
pubmed: 22580950
Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).
pubmed: 21368132
pmcid: 3053962
Chelpuri, D. et al. Mapping quantitative trait loci (QTLs) associated with resistance to major pathotype-isolates of pearl millet downy mildew pathogen. Eur. J. Plant Pathol. 154, 983–994 (2019).
Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017).
pubmed: 28538728
Wang, S. & Gao, L.-Z. Complete chloroplast genome sequence of green foxtail (Setaria viridis), a promising model system for C4 photosynthesis. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 3707–3708 (2016).
pubmed: 26305916
Soderlund, C. et al. Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLOS Genet. 5, e1000740 (2009).
pubmed: 19936069
pmcid: 2774520
Mayer, M. et al. Discovery of beneficial haplotypes for complex traits in maize landraces. Nat. Commun. 11, 4954 (2020).
pubmed: 33009396
pmcid: 7532167
Wang, W. et al. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat. Commun. 12, 6263 (2021).
pubmed: 34741017
pmcid: 8571336
Kamm, A., Schmidt, T. & Heslop-Harrison, J. S. Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum. Mol. Gen. Genet. 244, 420–425 (1994).
pubmed: 7521511
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinforma. Oxf. Engl. 34, 3094–3100 (2018).
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
pubmed: 35357919
pmcid: 9186530
Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in drosophila genomic DNA. Genome Res. 10, 516–522 (2000).
pubmed: 10779491
pmcid: 310882
Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Res. 9, ISCB Comm J-304 (2020).
pubmed: 32489650
pmcid: 7222033
Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).
pubmed: 29233850
Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinforma. Oxf. Engl. 24, 637–644 (2008).
Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).
pubmed: 15728110
Haas, B. J. et al. Improving the arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
pubmed: 14500829
pmcid: 206470
Gotoh, O. Direct mapping and alignment of protein sequences onto genomic sequence. Bioinforma. Oxf. Engl. 24, 2438–2444 (2008).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
pubmed: 18190707
pmcid: 2395244
Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).
pubmed: 34417604
pmcid: 8450103
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinforma. Oxf. Engl. 29, 2933–2935 (2013).
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
pubmed: 9254694
pmcid: 146917
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinforma. Oxf. Engl. 30, 1236–1240 (2014).
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. Plos One 6, e21800 (2011).
pubmed: 21789182
pmcid: 3138752
Eberhardt, R. Y. et al. AntiFam: a tool to help identify spurious ORFs in protein annotation. Database 2012, bas003 (2012).
pubmed: 22434837
pmcid: 3308159
Geib, S. M. et al. Genome annotation generator: a simple tool for generating and correcting WGS annotation tables for NCBI submission. GigaScience 7, 1–5 (2018).
pubmed: 29635297
Dainat, J. et al. NBISweden/AGAT: AGAT-v1.0.0. https://doi.org/10.5281/zenodo.7255559 (2022).
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).
pubmed: 22217600
pmcid: 3326336
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
pubmed: 29035372
Pracana, R., Priyam, A., Levantis, I., Nichols, R. A. & Wurm, Y. The fire ant social chromosome supergene variant Sb shows low diversity but high divergence from SB. Mol. Ecol. 26, 2864–2879 (2017).
pubmed: 28220980
pmcid: 5485014
Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).
pubmed: 31842948
pmcid: 6913012
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
Roberts, A. et al. Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. Bioinforma. Oxf. Engl. 23, i401–i407 (2007).
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One 9, e112963 (2014).
pubmed: 25409509
pmcid: 4237348
Schultz, A.-K. et al. A jumping profile hidden Markov model and applications to recombination sites in HIV and HCV genomes. BMC Bioinforma. 7, 265 (2006).
Schultz, A.-K. et al. jpHMM: improving the reliability of recombination prediction in HIV-1. Nucleic Acids Res. 37, W647–W651 (2009).
pubmed: 19443440
pmcid: 2703979
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
Baum, B. R. PHYLIP: Phylogeny Inference Package. Version 3.2. Joel Felsenstein. Q. Rev. Biol. 64, 539–541 (1989).
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
pubmed: 16862161
Wang, J. & Zhang, Z. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 19, 629–640 (2021).