CAR virus receptor mediates erythroid differentiation and migration and is downregulated in MDS.
Journal
Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
02
05
2023
accepted:
23
08
2023
revised:
21
08
2023
medline:
6
11
2023
pubmed:
7
9
2023
entrez:
6
9
2023
Statut:
ppublish
Résumé
Myelodysplastic syndromes (MDS) are myeloid neoplasms presenting with dysplasia in the bone marrow (BM) and peripheral cytopenia. In most patients anemia develops. We screened for genes that are expressed abnormally in erythroid progenitor cells (EP) and contribute to the pathogenesis of MDS. We found that the Coxsackie-Adenovirus receptor (CAR = CXADR) is markedly downregulated in CD45
Identifiants
pubmed: 37673973
doi: 10.1038/s41375-023-02015-7
pii: 10.1038/s41375-023-02015-7
doi:
Substances chimiques
Receptors, Virus
0
Cell Adhesion Molecules
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2250-2260Subventions
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : F4701-B20
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : F4704-B20
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Bennett JM, Kouides PA, Forman SJ. The myelodysplastic syndromes: morphology, risk assessment, and clinical management (2002). Int J Hematol. 2002;76:228–38.
pubmed: 12430930
doi: 10.1007/BF03165122
Valent P, Horny HP, Bennett JM, Fonatsch C, Germing U, Greenberg P, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res. 2007;31:727–36.
pubmed: 17257673
doi: 10.1016/j.leukres.2006.11.009
Nimer SD. Myelodysplastic syndromes. Blood. 2008;111:4841–51.
pubmed: 18467609
doi: 10.1182/blood-2007-08-078139
Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7:118–29.
pubmed: 17251918
doi: 10.1038/nrc2047
Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110:4385–95.
pubmed: 17726160
doi: 10.1182/blood-2007-03-082404
Mills KI, Kohlmann A, Williams PM, Wieczorek L, Liu WM, Li R, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood. 2009;114:1063–72.
pubmed: 19443663
doi: 10.1182/blood-2008-10-187203
Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:504–15.
doi: 10.1200/JCO.2010.31.1175
Schanz J, Steidl C, Fonatsch C, Pfeilstocker M, Nosslinger T, Tuechler H, et al. Coalesced multicentric analysis of 2351 patients with myelodysplastic syndromes indicates an underestimation of poor-risk cytogenetics of myelodysplastic syndromes in the international prognostic scoring system. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:1963–70.
doi: 10.1200/JCO.2010.28.3978
Lindsley RC, Ebert BL. Molecular pathophysiology of myelodysplastic syndromes. Ann Rev Pathol. 2013;8:21–47.
doi: 10.1146/annurev-pathol-011811-132436
Smith AE, Mohamedali AM, Kulasekararaj A, Lim Z, Gaken J, Lea NC, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116:3923–32.
pubmed: 20693430
doi: 10.1182/blood-2010-03-274704
Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A, et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 2012;119:3203–10.
pubmed: 22323480
pmcid: 3321850
doi: 10.1182/blood-2011-12-399774
Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.
pubmed: 24220272
doi: 10.1038/leu.2013.336
Duetz C, Westers TM, van de Loosdrecht AA. Clinical implication of multi-parameter flow cytometry in myelodysplastic syndromes. Pathobiol: J Immunopathol, Mol Cell Biol. 2019;86:14–23.
doi: 10.1159/000490727
Malcovati L, Della Porta MG, Lunghi M, Pascutto C, Vanelli L, Travaglino E, et al. Flow cytometry evaluation of erythroid and myeloid dysplasia in patients with myelodysplastic syndrome. Leukemia. 2005;19:776–83.
pubmed: 15789068
doi: 10.1038/sj.leu.2403680
Della Porta MG, Malcovati L, Invernizzi R, Travaglino E, Pascutto C, Maffioli M, et al. Flow cytometry evaluation of erythroid dysplasia in patients with myelodysplastic syndrome. Leukemia. 2006;20:549–55.
pubmed: 16498394
doi: 10.1038/sj.leu.2404142
Westers TM, Cremers EM, Oelschlaegel U, Johansson U, Bettelheim P, Matarraz S, et al. Immunophenotypic analysis of erythroid dysplasia in myelodysplastic syndromes. A report from the IMDSFlow working group. Haematologica. 2017;102:308–19.
pubmed: 27758818
pmcid: 5286938
doi: 10.3324/haematol.2016.147835
Ogata K, Nakamura K, Yokose N, Tamura H, Tachibana M, Taniguchi O, et al. Clinical significance of phenotypic features of blasts in patients with myelodysplastic syndrome. Blood. 2002;100:3887–96.
pubmed: 12393641
doi: 10.1182/blood-2002-01-0222
van de Loosdrecht AA, Westers TM, Westra AH, Drager AM, van der Velden VH, Ossenkoppele GJ. Identification of distinct prognostic subgroups in low- and intermediate-1-risk myelodysplastic syndromes by flow cytometry. Blood. 2008;111:1067–77.
pubmed: 17971483
doi: 10.1182/blood-2007-07-098764
Porwit A, van de Loosdrecht AA, Bettelheim P, Brodersen LE, Burbury K, Cremers E, et al. Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes-proposal from the International/European LeukemiaNet Working Group for Flow Cytometry in MDS. Leukemia. 2014;28:1793–8.
pubmed: 24919805
doi: 10.1038/leu.2014.191
Xu F, Wu L, He Q, Zhang Z, Chang C, Li X. Immunophenotypic analysis of erythroid dysplasia and its diagnostic application in myelodysplastic syndromes. Int Med J. 2012;42:401–11.
doi: 10.1111/j.1445-5994.2011.02630.x
Mathis S, Chapuis N, Debord C, Rouquette A, Radford-Weiss I, Park S, et al. Flow cytometric detection of dyserythropoiesis: a sensitive and powerful diagnostic tool for myelodysplastic syndromes. Leukemia. 2013;27:1981–7.
pubmed: 23765225
doi: 10.1038/leu.2013.178
Eidenschink Brodersen L, Menssen AJ, Wangen JR, Stephenson CF, de Baca ME, Zehentner BK, et al. Assessment of erythroid dysplasia by “difference from normal” in routine clinical flow cytometry workup. Cytom Part B, Clin Cytom. 2015;88:125–35.
doi: 10.1002/cytob.21199
Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99.
pubmed: 6952920
doi: 10.1111/j.1365-2141.1982.tb08475.x
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.
pubmed: 27069254
doi: 10.1182/blood-2016-03-643544
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.
pubmed: 35732831
pmcid: 9252913
doi: 10.1038/s41375-022-01613-1
Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.
pubmed: 9058730
doi: 10.1182/blood.V89.6.2079
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.
pubmed: 22740453
pmcid: 4425443
doi: 10.1182/blood-2012-03-420489
Machherndl-Spandl S, Suessner S, Danzer M, Proell J, Gabriel C, Lauf J, et al. Molecular pathways of early CD105-positive erythroid cells as compared with CD34-positive common precursor cells by flow cytometric cell-sorting and gene expression profiling. Blood Cancer J. 2013;3:e100.
pubmed: 23310930
pmcid: 3556575
doi: 10.1038/bcj.2012.45
Pannu KK, Joe ET, Iyer SB. Performance evaluation of QuantiBRITE phycoerythrin beads. Cytometry. 2001;45:250–8.
pubmed: 11746094
doi: 10.1002/1097-0320(20011201)45:4<250::AID-CYTO10021>3.0.CO;2-T
Kosulin K, Rauch M, Ambros PF, Potschger U, Chott A, Jager U, et al. Screening for adenoviruses in haematological neoplasia: High prevalence in mantle cell lymphoma. Euro J Cancer. 2014;50:622–7.
doi: 10.1016/j.ejca.2013.10.013
Ebner K, Suda M, Watzinger F, Lion T. Molecular detection and quantitative analysis of the entire spectrum of human adenoviruses by a two-reaction real-time PCR assay. J Clin Microbiol. 2005;43:3049–53.
pubmed: 16000414
pmcid: 1169147
doi: 10.1128/JCM.43.7.3049-3053.2005
Dietel M, Hafner N, Jansen L, Durst M, Runnebaum IB. Novel splice variant CAR 4/6 of the coxsackie adenovirus receptor is differentially expressed in cervical carcinogenesis. J Mol Med. 2011;89:621–30.
pubmed: 21431326
doi: 10.1007/s00109-011-0742-6
Hoermann G, Blatt K, Greiner G, Putz EM, Berger A, Herrmann H, et al. CD52 is a molecular target in advanced systemic mastocytosis. FASEB J Off Publ Fed Am Soc Exp Biol. 2014;28:3540–51.
Liu J, Zhang J, Ginzburg Y, Li H, Xue F, De Franceschi L, et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood. 2013;121:e43–9.
pubmed: 23287863
pmcid: 3578961
doi: 10.1182/blood-2012-09-456079
Zhou T, Kinney MC, Scott LM, Zinkel SS, Rebel VI. Revisiting the case for genetically engineered mouse models in human myelodysplastic syndrome research. Blood. 2015;126:1057–68.
pubmed: 26077396
pmcid: 4551359
doi: 10.1182/blood-2015-01-624239
Wu G, Cheng, Zhang C. Membrane protein CAR promotes hematopoietic regeneration upon stress. Haematologica. 2021;106:2180–90.
pubmed: 32586901
Valent P, Busche G, Theurl I, Uras IZ, Germing U, Stauder R, et al. Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica. 2018;103:1593–603.
pubmed: 30076180
pmcid: 6165792
doi: 10.3324/haematol.2018.192518
Anders M, Vieth M, Rocken C, Ebert M, Pross M, Gretschel S, et al. Loss of the coxsackie and adenovirus receptor contributes to gastric cancer progression. Br J Cancer. 2009;100:352–9.
pubmed: 19142187
pmcid: 2634721
doi: 10.1038/sj.bjc.6604876
Matsumoto K, Shariat SF, Ayala GE, Rauen KA, Lerner SP. Loss of coxsackie and adenovirus receptor expression is associated with features of aggressive bladder cancer. Urology. 2005;66:441–6.
pubmed: 16040097
doi: 10.1016/j.urology.2005.02.033
Huang KC, Altinoz M, Wosik K, Larochelle N, Koty Z, Zhu L, et al. Impact of the coxsackie and adenovirus receptor (CAR) on glioma cell growth and invasion: requirement for the C-terminal domain. Int J Cancer. 2005;113:738–45.
pubmed: 15499626
doi: 10.1002/ijc.20623
Pong RC, Roark R, Ou JY, Fan J, Stanfield J, Frenkel E, et al. Mechanism of increased coxsackie and adenovirus receptor gene expression and adenovirus uptake by phytoestrogen and histone deacetylase inhibitor in human bladder cancer cells and the potential clinical application. Cancer Res. 2006;66:8822–8.
pubmed: 16951199
doi: 10.1158/0008-5472.CAN-05-4672
Pong RC, Lai YJ, Chen H, Okegawa T, Frenkel E, Sagalowsky A, et al. Epigenetic regulation of coxsackie and adenovirus receptor (CAR) gene promoter in urogenital cancer cells. Cancer Res. 2003;63:8680–6.
pubmed: 14695181
Morton PE, Hicks A, Nastos T, Santis G, Parsons M. CAR regulates epithelial cell junction stability through control of E-cadherin trafficking. Sci Rep. 2013;3:2889.
pubmed: 24096322
pmcid: 3791454
doi: 10.1038/srep02889
Valent P, Orazi A, Steensma DP, Ebert BL, Haase D, Malcovati L, et al. Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget. 2017;8:73483–500.
pubmed: 29088721
pmcid: 5650276
doi: 10.18632/oncotarget.19008
Matarraz S, Lopez A, Barrena S, Fernandez C, Jensen E, Flores-Montero J, et al. Bone marrow cells from myelodysplastic syndromes show altered immunophenotypic profiles that may contribute to the diagnosis and prognostic stratification of the disease: a pilot study on a series of 56 patients. Cytom Part B Clin Cytom. 2010;78:154–68.
Chu SC, Wang TF, Li CC, Kao RH, Li DK, Su YC, et al. Flow cytometric scoring system as a diagnostic and prognostic tool in myelodysplastic syndromes. Leuk Res. 2011;35:868–73.
pubmed: 21397943
doi: 10.1016/j.leukres.2011.02.016
Alhan C, Westers TM, Cremers EM, Cali C, Witte BI, Ossenkoppele GJ, et al. High flow cytometric scores identify adverse prognostic subgroups within the revised international prognostic scoring system for myelodysplastic syndromes. Br J Haematol. 2014;167:100–9.
pubmed: 24976502
doi: 10.1111/bjh.12994
Alhan C, Westers TM, Cremers EM, Cali C, Witte BI, Ossenkoppele GJ, et al. The myelodysplastic syndromes flow cytometric score: a three-parameter prognostic flow cytometric scoring system. Leukemia. 2016;30:658–65.
pubmed: 26503643
doi: 10.1038/leu.2015.295
Yan H, Ali A, Blanc L, Narla A, Lane JM, Gao E, et al. Comprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis. Am J Hematol. 2021;96:1064–76.
pubmed: 34021930
pmcid: 8355124
doi: 10.1002/ajh.26247