Specialized astrocytes mediate glutamatergic gliotransmission in the CNS.
Adult
Humans
Astrocytes
/ classification
Central Nervous System
/ cytology
Glutamic Acid
/ metabolism
Hippocampus
/ cytology
Neurons
/ metabolism
Signal Transduction
Synaptic Transmission
Calcium
/ metabolism
Exocytosis
Single-Cell Gene Expression Analysis
Vesicular Glutamate Transport Protein 1
/ deficiency
Gene Deletion
Cerebral Cortex
/ cytology
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
10
01
2022
accepted:
31
07
2023
medline:
23
10
2023
pubmed:
7
9
2023
entrez:
6
9
2023
Statut:
ppublish
Résumé
Multimodal astrocyte-neuron communications govern brain circuitry assembly and function
Identifiants
pubmed: 37674083
doi: 10.1038/s41586-023-06502-w
pii: 10.1038/s41586-023-06502-w
pmc: PMC10550825
doi:
Substances chimiques
Glutamic Acid
3KX376GY7L
SLC17A7 protein, human
0
Calcium
SY7Q814VUP
Vesicular Glutamate Transport Protein 1
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
120-129Informations de copyright
© 2023. The Author(s).
Références
Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).
pubmed: 30309945
pmcid: 6292669
doi: 10.1126/science.aat0473
Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).
pubmed: 24559669
pmcid: 4107238
doi: 10.1016/j.neuron.2014.02.007
Poskanzer, K. E. & Yuste, R. Astrocytes regulate cortical state switching in vivo. Proc. Natl Acad. Sci. USA 113, E2675–E2684 (2016).
pubmed: 27122314
pmcid: 4868485
doi: 10.1073/pnas.1520759113
Bezzi, P. et al. CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710 (2001).
pubmed: 11426226
doi: 10.1038/89490
Kang, N., Xu, J., Xu, Q., Nedergaard, M. & Kang, J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 94, 4121–4130 (2005).
pubmed: 16162834
doi: 10.1152/jn.00448.2005
Habbas, S. et al. Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163, 1730–1741 (2015).
pubmed: 26686654
doi: 10.1016/j.cell.2015.11.023
Scofield, M. D. et al. Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol. Psychiatry 78, 441–451 (2015).
pubmed: 25861696
doi: 10.1016/j.biopsych.2015.02.016
Bezzi, P. et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620 (2004).
pubmed: 15156145
doi: 10.1038/nn1246
Jourdain, P. et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci. 10, 331–339 (2007).
pubmed: 17310248
doi: 10.1038/nn1849
Bergersen, L. H. et al. Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 22, 1690–1697 (2012).
pubmed: 21914633
doi: 10.1093/cercor/bhr254
Hamilton, N. B. & Attwell, D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238 (2010).
pubmed: 20300101
doi: 10.1038/nrn2803
Nedergaard, M. & Verkhratsky, A. Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60, 1013–1023 (2012).
pubmed: 22228580
pmcid: 3340515
doi: 10.1002/glia.22288
Fiacco, T. A. & McCarthy, K. D. Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J. Neurosci. 38, 3–13 (2018).
pubmed: 29298904
pmcid: 5761435
doi: 10.1523/JNEUROSCI.0016-17.2017
Fiacco, T. A. et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54, 611–626 (2007).
pubmed: 17521573
doi: 10.1016/j.neuron.2007.04.032
Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).
pubmed: 18171944
pmcid: 6671143
doi: 10.1523/JNEUROSCI.4178-07.2008
Sun, W. et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339, 197–200 (2013).
pubmed: 23307741
pmcid: 3569008
doi: 10.1126/science.1226740
Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549 (2017).
pubmed: 28712653
pmcid: 5811312
doi: 10.1016/j.neuron.2017.06.029
Bayraktar, O. A. et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat. Neurosci. 23, 500–509 (2020).
pubmed: 32203496
pmcid: 7116562
doi: 10.1038/s41593-020-0602-1
Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020).
pubmed: 32139688
pmcid: 7058027
doi: 10.1038/s41467-019-14198-8
Ohlig, S. et al. Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO J. 40, e107532 (2021).
pubmed: 34549820
pmcid: 8561644
doi: 10.15252/embj.2020107532
Endo, F. et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science 378, eadc9020 (2022).
pubmed: 36378959
pmcid: 9873482
doi: 10.1126/science.adc9020
Marvin, J. S. et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15, 936–939 (2018).
pubmed: 30377363
pmcid: 6394230
doi: 10.1038/s41592-018-0171-3
Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).
pubmed: 32341542
pmcid: 9262034
doi: 10.1038/s41593-020-0624-8
Hochgerner, H., Zeisel, A., Lonnerberg, P. & Linnarsson, S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat. Neurosci. 21, 290–299 (2018).
pubmed: 29335606
doi: 10.1038/s41593-017-0056-2
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).
pubmed: 30096314
pmcid: 6086934
doi: 10.1016/j.cell.2018.06.021
Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
pubmed: 25700174
doi: 10.1126/science.aaa1934
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).
pubmed: 30096299
pmcid: 6447408
doi: 10.1016/j.cell.2018.07.028
Artegiani, B. et al. A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep. 21, 3271–3284 (2017).
pubmed: 29241552
doi: 10.1016/j.celrep.2017.11.050
Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 (2021).
pubmed: 34004146
pmcid: 8195859
doi: 10.1016/j.cell.2021.04.021
Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).
pubmed: 34413515
doi: 10.1038/s41593-021-00905-6
Lee, J. H. et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590, 612–617 (2021).
pubmed: 33361813
doi: 10.1038/s41586-020-03060-3
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).
pubmed: 28846088
pmcid: 5623139
doi: 10.1038/nmeth.4407
Ayhan, F. et al. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron 109, 2091–2105 (2021).
pubmed: 34051145
pmcid: 8273123
doi: 10.1016/j.neuron.2021.05.003
Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 109, 3088–3103 (2021).
pubmed: 34582785
pmcid: 8564763
doi: 10.1016/j.neuron.2021.09.001
Fremeau, R. T. et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001).
pubmed: 11502256
doi: 10.1016/S0896-6273(01)00344-0
Di Castro, M. A. et al. Local Ca
pubmed: 21909085
doi: 10.1038/nn.2929
Bindocci, E. et al. Three-dimensional Ca
pubmed: 28522470
doi: 10.1126/science.aai8185
Souter, E. A. et al. Disruption of VGLUT1 in cholinergic medial habenula projections increases nicotine self-administration. eNeuro 9, ENEURO.0481-0421.2021 (2022).
doi: 10.1523/ENEURO.0481-21.2021
Rudolph, R. et al. The inhibitory input to mouse cerebellar Purkinje cells is reciprocally modulated by Bergmann glial P2Y1 and AMPA receptor signaling. Glia 64, 1265–1280 (2016).
pubmed: 27144942
doi: 10.1002/glia.22999
Chen, N. et al. Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes. Proc. Natl Acad. Sci. USA 109, E2832–E2841 (2012).
pubmed: 23012414
pmcid: 3478642
doi: 10.1073/pnas.1206557109
Dahlqvist, M. K., Thomsen, K. J., Postnov, D. D. & Lauritzen, M. J. Modification of oxygen consumption and blood flow in mouse somatosensory cortex by cell-type-specific neuronal activity. J. Cereb. Blood Flow Metab. 40, 2010–2025 (2020).
pubmed: 31645177
doi: 10.1177/0271678X19882787
Xie, Y. et al. Resolution of high-frequency mesoscale intracortical maps using the genetically encoded glutamate sensor iGluSnFR. J. Neurosci. 36, 1261–1272 (2016).
pubmed: 26818514
pmcid: 6604822
doi: 10.1523/JNEUROSCI.2744-15.2016
Fuzik, J. et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat. Biotechnol. 34, 175–183 (2016).
pubmed: 26689544
doi: 10.1038/nbt.3443
Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using patch-seq. Nat. Biotechnol. 34, 199–203 (2016).
pubmed: 26689543
doi: 10.1038/nbt.3445
Vezzani, et al. Astrocytes in the initiation and progression of epilepsy. Nat. Rev. Neurol. 18, 707–722 (2022).
pubmed: 36280704
doi: 10.1038/s41582-022-00727-5
Haber, S. N. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 282, 248–257 (2014).
pubmed: 25445194
doi: 10.1016/j.neuroscience.2014.10.008
Blesa, J., Foffani, G., Dehay, B., Bezard, E. & Obeso, J. A. Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat. Rev. Neurosci. 23, 115–128 (2022).
pubmed: 34907352
doi: 10.1038/s41583-021-00542-9
Hnasko, T. S. et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65, 643–656 (2010).
pubmed: 20223200
pmcid: 2846457
doi: 10.1016/j.neuron.2010.02.012
Rodriguez, M. C., Obeso, J. A. & Olanow, C. W. Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann. Neurol. 44, S175–S188 (1998).
pubmed: 9749591
doi: 10.1002/ana.410440726
Valenti, O., Mannaioni, G., Seabrook, G. R., Conn, P. J. & Marino, M. J. Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J. Pharmacol. Exp. Ther. 313, 1296–1304 (2005).
pubmed: 15761115
doi: 10.1124/jpet.104.080481
Corkrum, M. & Araque, A. Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacology 46, 1864–1872 (2021).
pubmed: 34253855
pmcid: 8429665
doi: 10.1038/s41386-021-01090-7
Masilamoni, G. J. & Smith, Y. Metabotropic glutamate receptors: targets for neuroprotective therapies in Parkinson disease. Curr. Opin. Pharmacol. 38, 72–80 (2018).
pubmed: 29605730
pmcid: 5949090
doi: 10.1016/j.coph.2018.03.004
Hirrlinger, P. G., Scheller, A., Braun, C., Hirrlinger, J. & Kirchhoff, F. Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia 54, 11–20 (2006).
pubmed: 16575885
doi: 10.1002/glia.20342
van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).
Garyfallidis, E. et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014).
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Proc. Medical Image Computing and Computer Assisted Intervention—MICCAI 2018 (2018).
Cadwell, C. R. et al. Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat. Protoc. 12, 2531–2553 (2017).
pubmed: 29189773
pmcid: 6422019
doi: 10.1038/nprot.2017.120
Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953 (2020).
pubmed: 33186530
pmcid: 7781065
doi: 10.1016/j.cell.2020.09.057
Basler, L., Gerdes, S., Wolfer, D. P. & Slomianka, L. Sampling the mouse hippocampal dentate gyrus. Front. Neuroanat. https://doi.org/10.3389/fnana.2017.00123 (2017).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
pubmed: 23950696
pmcid: 3738458
doi: 10.1371/journal.pcbi.1003118
Cheng, S. et al. Vision-dependent specification of cell types and function in the developing cortex. Cell 185, 311–327 (2022).
pubmed: 35063073
pmcid: 8813006
doi: 10.1016/j.cell.2021.12.022
Wei, J.-R. et al. Identification of visual cortex cell types and species differences using single-cell RNA sequencing. Nat. Commun. 13, 6902 (2022).
pubmed: 36371428
pmcid: 9653448
doi: 10.1038/s41467-022-34590-1
Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).
pubmed: 29227469
doi: 10.1038/nbt.4038
Agarwal, D. et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat. Commun. 11, 4183 (2020).
pubmed: 32826893
pmcid: 7442652
doi: 10.1038/s41467-020-17876-0
Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).
pubmed: 31178122
pmcid: 6716797
doi: 10.1016/j.cell.2019.05.006
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).
pubmed: 30954476
pmcid: 6625319
doi: 10.1016/j.cels.2018.11.005
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Armbruster, M., Dulla, C. G. & Diamond, J. S. Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake. eLife 9, e54441 (2020).
pubmed: 32352378
pmcid: 7255799
doi: 10.7554/eLife.54441
Sah, P., Hestrin, S. & Nicoll, R. A. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246, 815–818 (1989).
pubmed: 2573153
doi: 10.1126/science.2573153
Banerjee, J. et al. Altered glutamatergic tone reveals two distinct resting state networks at the cellular level in hippocampal sclerosis. Sci. Rep. 7, 319–319 (2017).
pubmed: 28336943
pmcid: 5428248
doi: 10.1038/s41598-017-00358-7
Adamsky, A. et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 59–71 (2018).
pubmed: 29804835
doi: 10.1016/j.cell.2018.05.002
Banerjee, A., Larsen, R. S., Philpot, B. D. & Paulsen, O. Roles of presynaptic NMDA receptors in neurotransmission and plasticity. Trends Neurosci. 39, 26–39 (2016).
pubmed: 26726120
doi: 10.1016/j.tins.2015.11.001
Henneberger, C. et al. LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron 108, 919–936 (2020).
pubmed: 32976770
pmcid: 7736499
doi: 10.1016/j.neuron.2020.08.030
Romanos, J., Benke, D., Saab, A. S., Zeilhofer, H. U. & Santello, M. Differences in glutamate uptake between cortical regions impact neuronal NMDA receptor activation. Commun. Biol. 2, 127 (2019).
pubmed: 30963115
pmcid: 6451009
doi: 10.1038/s42003-019-0367-9
Wang, Y. et al. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci. 22, 1936–1944 (2019).
pubmed: 31570865
pmcid: 6858541
doi: 10.1038/s41593-019-0492-2
Helassa, N. et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl Acad. Sci. USA 115, 5594–5599 (2018).
pubmed: 29735711
pmcid: 6003469
doi: 10.1073/pnas.1720648115
Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399 (2011).
pubmed: 21527931
pmcid: 4772972
doi: 10.1038/nmeth.1596
Yang, L. et al. An adaptive non-local means filter for denoising live-cell images and improving particle detection. J. Struct. Biol. 172, 233–243 (2010).
pubmed: 20599512
pmcid: 3087503
doi: 10.1016/j.jsb.2010.06.019
Buades, A., Coll, B. & Morel, J.-M. Non-local means denoising. Image Proc. On Line 1, 208–212 (2011).
doi: 10.5201/ipol.2011.bcm_nlm
Duval, V., Aujol, J.-F. & Gousseau, Y. A bias-variance approach for the nonlocal means. SIAM J. Imag. Sci. 4, 760–788 (2011).
doi: 10.1137/100790902
Krull, A., Vičar, T., Prakash, M., Lalit, M. & Jug, F. Probabilistic Noise2Void: unsupervised content-aware denoising. Front. Comput. Sci. https://doi.org/10.3389/fcomp.2020.00005 (2020).
Maier, O. et al. MedPy v.0.4.0 (2019).
El-Boustani, S. et al. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360, 1349–1354 (2018).
pubmed: 29930137
pmcid: 6366621
doi: 10.1126/science.aao0862
Blanco-Centurion, C. et al. Dynamic network activation of hypothalamic MCH neurons in REM sleep and exploratory behavior. J. Neurosci. 39, 4986–4998 (2019).
pubmed: 31036764
pmcid: 6670248
doi: 10.1523/JNEUROSCI.0305-19.2019
Kellner, V. et al. Dual metabotropic glutamate receptor signaling enables coordination of astrocyte and neuron activity in developing sensory domains. Neuron 109, 2545–2555 (2021).
pubmed: 34245686
pmcid: 9083901
doi: 10.1016/j.neuron.2021.06.010
Makowski, D. et al. NeuroKit2: a Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689–1696 (2021).
pubmed: 33528817
doi: 10.3758/s13428-020-01516-y
Huang, C. Y., Chiu, N. C., Huang, F. Y., Chao, Y. C. & Chi, H. Prediction of coronary artery aneurysms in children with Kawasaki disease before starting initial treatment. Front. Pediatr. 9, 748467 (2021).
pubmed: 34660496
pmcid: 8515030
doi: 10.3389/fped.2021.748467
Jensen, T. P. et al. Multiplex imaging relates quantal glutamate release to presynaptic Ca
pubmed: 30926781
pmcid: 6441074
doi: 10.1038/s41467-019-09216-8
Dürst, C. D. et al. High-speed imaging of glutamate release with genetically encoded sensors. Nat. Protoc. 14, 1401–1424 (2019).
pubmed: 30988508
pmcid: 6751072
doi: 10.1038/s41596-019-0143-9
Shimaoka, D., Harris, K. D. & Carandini, M. Effects of arousal on mouse sensory cortex depend on modality. Cell Rep. 25, 3230 (2018).
pubmed: 30540954
pmcid: 6302665
doi: 10.1016/j.celrep.2018.11.105
Henneberger, C., Papouin, T., Oliet, S. H. R. & Rusakov, D. A. Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236 (2010).
pubmed: 20075918
pmcid: 2807667
doi: 10.1038/nature08673
Ledonne, A. & Mercuri, N. B. mGluR1-dependent long term depression in rodent midbrain dopamine neurons is regulated by neuregulin 1/ErbB signaling. Front. Mol. Neurosci. 11, 346 (2018).
pubmed: 30327588
pmcid: 6174199
doi: 10.3389/fnmol.2018.00346
Gu, Y. et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci. 15, 1700–1706 (2012).
pubmed: 23143513
pmcid: 3509272
doi: 10.1038/nn.3260
Rusina, E., Bernard, C. & Williamson, A. The kainic acid models of temporal lobe epilepsy. eNeuro 8, ENEURO.0337-20.2021 (2021).
pubmed: 33658312
pmcid: 8174050
doi: 10.1523/ENEURO.0337-20.2021
Sulzer, D., Sonders, M. S., Poulsen, N. W. & Galli, A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75, 406–433 (2005).
pubmed: 15955613
doi: 10.1016/j.pneurobio.2005.04.003