Specialized astrocytes mediate glutamatergic gliotransmission in the CNS.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 10 01 2022
accepted: 31 07 2023
medline: 23 10 2023
pubmed: 7 9 2023
entrez: 6 9 2023
Statut: ppublish

Résumé

Multimodal astrocyte-neuron communications govern brain circuitry assembly and function

Identifiants

pubmed: 37674083
doi: 10.1038/s41586-023-06502-w
pii: 10.1038/s41586-023-06502-w
pmc: PMC10550825
doi:

Substances chimiques

Glutamic Acid 3KX376GY7L
SLC17A7 protein, human 0
Calcium SY7Q814VUP
Vesicular Glutamate Transport Protein 1 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

120-129

Informations de copyright

© 2023. The Author(s).

Références

Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).
pubmed: 30309945 pmcid: 6292669 doi: 10.1126/science.aat0473
Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).
pubmed: 24559669 pmcid: 4107238 doi: 10.1016/j.neuron.2014.02.007
Poskanzer, K. E. & Yuste, R. Astrocytes regulate cortical state switching in vivo. Proc. Natl Acad. Sci. USA 113, E2675–E2684 (2016).
pubmed: 27122314 pmcid: 4868485 doi: 10.1073/pnas.1520759113
Bezzi, P. et al. CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710 (2001).
pubmed: 11426226 doi: 10.1038/89490
Kang, N., Xu, J., Xu, Q., Nedergaard, M. & Kang, J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 94, 4121–4130 (2005).
pubmed: 16162834 doi: 10.1152/jn.00448.2005
Habbas, S. et al. Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163, 1730–1741 (2015).
pubmed: 26686654 doi: 10.1016/j.cell.2015.11.023
Scofield, M. D. et al. Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol. Psychiatry 78, 441–451 (2015).
pubmed: 25861696 doi: 10.1016/j.biopsych.2015.02.016
Bezzi, P. et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620 (2004).
pubmed: 15156145 doi: 10.1038/nn1246
Jourdain, P. et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci. 10, 331–339 (2007).
pubmed: 17310248 doi: 10.1038/nn1849
Bergersen, L. H. et al. Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 22, 1690–1697 (2012).
pubmed: 21914633 doi: 10.1093/cercor/bhr254
Hamilton, N. B. & Attwell, D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238 (2010).
pubmed: 20300101 doi: 10.1038/nrn2803
Nedergaard, M. & Verkhratsky, A. Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60, 1013–1023 (2012).
pubmed: 22228580 pmcid: 3340515 doi: 10.1002/glia.22288
Fiacco, T. A. & McCarthy, K. D. Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J. Neurosci. 38, 3–13 (2018).
pubmed: 29298904 pmcid: 5761435 doi: 10.1523/JNEUROSCI.0016-17.2017
Fiacco, T. A. et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54, 611–626 (2007).
pubmed: 17521573 doi: 10.1016/j.neuron.2007.04.032
Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).
pubmed: 18171944 pmcid: 6671143 doi: 10.1523/JNEUROSCI.4178-07.2008
Sun, W. et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339, 197–200 (2013).
pubmed: 23307741 pmcid: 3569008 doi: 10.1126/science.1226740
Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549 (2017).
pubmed: 28712653 pmcid: 5811312 doi: 10.1016/j.neuron.2017.06.029
Bayraktar, O. A. et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat. Neurosci. 23, 500–509 (2020).
pubmed: 32203496 pmcid: 7116562 doi: 10.1038/s41593-020-0602-1
Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020).
pubmed: 32139688 pmcid: 7058027 doi: 10.1038/s41467-019-14198-8
Ohlig, S. et al. Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO J. 40, e107532 (2021).
pubmed: 34549820 pmcid: 8561644 doi: 10.15252/embj.2020107532
Endo, F. et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science 378, eadc9020 (2022).
pubmed: 36378959 pmcid: 9873482 doi: 10.1126/science.adc9020
Marvin, J. S. et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15, 936–939 (2018).
pubmed: 30377363 pmcid: 6394230 doi: 10.1038/s41592-018-0171-3
Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).
pubmed: 32341542 pmcid: 9262034 doi: 10.1038/s41593-020-0624-8
Hochgerner, H., Zeisel, A., Lonnerberg, P. & Linnarsson, S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat. Neurosci. 21, 290–299 (2018).
pubmed: 29335606 doi: 10.1038/s41593-017-0056-2
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).
pubmed: 30096314 pmcid: 6086934 doi: 10.1016/j.cell.2018.06.021
Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
pubmed: 25700174 doi: 10.1126/science.aaa1934
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).
pubmed: 30096299 pmcid: 6447408 doi: 10.1016/j.cell.2018.07.028
Artegiani, B. et al. A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep. 21, 3271–3284 (2017).
pubmed: 29241552 doi: 10.1016/j.celrep.2017.11.050
Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 (2021).
pubmed: 34004146 pmcid: 8195859 doi: 10.1016/j.cell.2021.04.021
Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).
pubmed: 34413515 doi: 10.1038/s41593-021-00905-6
Lee, J. H. et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590, 612–617 (2021).
pubmed: 33361813 doi: 10.1038/s41586-020-03060-3
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).
pubmed: 28846088 pmcid: 5623139 doi: 10.1038/nmeth.4407
Ayhan, F. et al. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron 109, 2091–2105 (2021).
pubmed: 34051145 pmcid: 8273123 doi: 10.1016/j.neuron.2021.05.003
Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 109, 3088–3103 (2021).
pubmed: 34582785 pmcid: 8564763 doi: 10.1016/j.neuron.2021.09.001
Fremeau, R. T. et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001).
pubmed: 11502256 doi: 10.1016/S0896-6273(01)00344-0
Di Castro, M. A. et al. Local Ca
pubmed: 21909085 doi: 10.1038/nn.2929
Bindocci, E. et al. Three-dimensional Ca
pubmed: 28522470 doi: 10.1126/science.aai8185
Souter, E. A. et al. Disruption of VGLUT1 in cholinergic medial habenula projections increases nicotine self-administration. eNeuro 9, ENEURO.0481-0421.2021 (2022).
doi: 10.1523/ENEURO.0481-21.2021
Rudolph, R. et al. The inhibitory input to mouse cerebellar Purkinje cells is reciprocally modulated by Bergmann glial P2Y1 and AMPA receptor signaling. Glia 64, 1265–1280 (2016).
pubmed: 27144942 doi: 10.1002/glia.22999
Chen, N. et al. Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes. Proc. Natl Acad. Sci. USA 109, E2832–E2841 (2012).
pubmed: 23012414 pmcid: 3478642 doi: 10.1073/pnas.1206557109
Dahlqvist, M. K., Thomsen, K. J., Postnov, D. D. & Lauritzen, M. J. Modification of oxygen consumption and blood flow in mouse somatosensory cortex by cell-type-specific neuronal activity. J. Cereb. Blood Flow Metab. 40, 2010–2025 (2020).
pubmed: 31645177 doi: 10.1177/0271678X19882787
Xie, Y. et al. Resolution of high-frequency mesoscale intracortical maps using the genetically encoded glutamate sensor iGluSnFR. J. Neurosci. 36, 1261–1272 (2016).
pubmed: 26818514 pmcid: 6604822 doi: 10.1523/JNEUROSCI.2744-15.2016
Fuzik, J. et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat. Biotechnol. 34, 175–183 (2016).
pubmed: 26689544 doi: 10.1038/nbt.3443
Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using patch-seq. Nat. Biotechnol. 34, 199–203 (2016).
pubmed: 26689543 doi: 10.1038/nbt.3445
Vezzani, et al. Astrocytes in the initiation and progression of epilepsy. Nat. Rev. Neurol. 18, 707–722 (2022).
pubmed: 36280704 doi: 10.1038/s41582-022-00727-5
Haber, S. N. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 282, 248–257 (2014).
pubmed: 25445194 doi: 10.1016/j.neuroscience.2014.10.008
Blesa, J., Foffani, G., Dehay, B., Bezard, E. & Obeso, J. A. Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat. Rev. Neurosci. 23, 115–128 (2022).
pubmed: 34907352 doi: 10.1038/s41583-021-00542-9
Hnasko, T. S. et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65, 643–656 (2010).
pubmed: 20223200 pmcid: 2846457 doi: 10.1016/j.neuron.2010.02.012
Rodriguez, M. C., Obeso, J. A. & Olanow, C. W. Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann. Neurol. 44, S175–S188 (1998).
pubmed: 9749591 doi: 10.1002/ana.410440726
Valenti, O., Mannaioni, G., Seabrook, G. R., Conn, P. J. & Marino, M. J. Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J. Pharmacol. Exp. Ther. 313, 1296–1304 (2005).
pubmed: 15761115 doi: 10.1124/jpet.104.080481
Corkrum, M. & Araque, A. Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacology 46, 1864–1872 (2021).
pubmed: 34253855 pmcid: 8429665 doi: 10.1038/s41386-021-01090-7
Masilamoni, G. J. & Smith, Y. Metabotropic glutamate receptors: targets for neuroprotective therapies in Parkinson disease. Curr. Opin. Pharmacol. 38, 72–80 (2018).
pubmed: 29605730 pmcid: 5949090 doi: 10.1016/j.coph.2018.03.004
Hirrlinger, P. G., Scheller, A., Braun, C., Hirrlinger, J. & Kirchhoff, F. Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia 54, 11–20 (2006).
pubmed: 16575885 doi: 10.1002/glia.20342
van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).
Garyfallidis, E. et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014).
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Proc. Medical Image Computing and Computer Assisted Intervention—MICCAI 2018 (2018).
Cadwell, C. R. et al. Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat. Protoc. 12, 2531–2553 (2017).
pubmed: 29189773 pmcid: 6422019 doi: 10.1038/nprot.2017.120
Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953 (2020).
pubmed: 33186530 pmcid: 7781065 doi: 10.1016/j.cell.2020.09.057
Basler, L., Gerdes, S., Wolfer, D. P. & Slomianka, L. Sampling the mouse hippocampal dentate gyrus. Front. Neuroanat. https://doi.org/10.3389/fnana.2017.00123 (2017).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
pubmed: 23950696 pmcid: 3738458 doi: 10.1371/journal.pcbi.1003118
Cheng, S. et al. Vision-dependent specification of cell types and function in the developing cortex. Cell 185, 311–327 (2022).
pubmed: 35063073 pmcid: 8813006 doi: 10.1016/j.cell.2021.12.022
Wei, J.-R. et al. Identification of visual cortex cell types and species differences using single-cell RNA sequencing. Nat. Commun. 13, 6902 (2022).
pubmed: 36371428 pmcid: 9653448 doi: 10.1038/s41467-022-34590-1
Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).
pubmed: 29227469 doi: 10.1038/nbt.4038
Agarwal, D. et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat. Commun. 11, 4183 (2020).
pubmed: 32826893 pmcid: 7442652 doi: 10.1038/s41467-020-17876-0
Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).
pubmed: 31178122 pmcid: 6716797 doi: 10.1016/j.cell.2019.05.006
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).
pubmed: 30954476 pmcid: 6625319 doi: 10.1016/j.cels.2018.11.005
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Armbruster, M., Dulla, C. G. & Diamond, J. S. Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake. eLife 9, e54441 (2020).
pubmed: 32352378 pmcid: 7255799 doi: 10.7554/eLife.54441
Sah, P., Hestrin, S. & Nicoll, R. A. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246, 815–818 (1989).
pubmed: 2573153 doi: 10.1126/science.2573153
Banerjee, J. et al. Altered glutamatergic tone reveals two distinct resting state networks at the cellular level in hippocampal sclerosis. Sci. Rep. 7, 319–319 (2017).
pubmed: 28336943 pmcid: 5428248 doi: 10.1038/s41598-017-00358-7
Adamsky, A. et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 59–71 (2018).
pubmed: 29804835 doi: 10.1016/j.cell.2018.05.002
Banerjee, A., Larsen, R. S., Philpot, B. D. & Paulsen, O. Roles of presynaptic NMDA receptors in neurotransmission and plasticity. Trends Neurosci. 39, 26–39 (2016).
pubmed: 26726120 doi: 10.1016/j.tins.2015.11.001
Henneberger, C. et al. LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron 108, 919–936 (2020).
pubmed: 32976770 pmcid: 7736499 doi: 10.1016/j.neuron.2020.08.030
Romanos, J., Benke, D., Saab, A. S., Zeilhofer, H. U. & Santello, M. Differences in glutamate uptake between cortical regions impact neuronal NMDA receptor activation. Commun. Biol. 2, 127 (2019).
pubmed: 30963115 pmcid: 6451009 doi: 10.1038/s42003-019-0367-9
Wang, Y. et al. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci. 22, 1936–1944 (2019).
pubmed: 31570865 pmcid: 6858541 doi: 10.1038/s41593-019-0492-2
Helassa, N. et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl Acad. Sci. USA 115, 5594–5599 (2018).
pubmed: 29735711 pmcid: 6003469 doi: 10.1073/pnas.1720648115
Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399 (2011).
pubmed: 21527931 pmcid: 4772972 doi: 10.1038/nmeth.1596
Yang, L. et al. An adaptive non-local means filter for denoising live-cell images and improving particle detection. J. Struct. Biol. 172, 233–243 (2010).
pubmed: 20599512 pmcid: 3087503 doi: 10.1016/j.jsb.2010.06.019
Buades, A., Coll, B. & Morel, J.-M. Non-local means denoising. Image Proc. On Line 1, 208–212 (2011).
doi: 10.5201/ipol.2011.bcm_nlm
Duval, V., Aujol, J.-F. & Gousseau, Y. A bias-variance approach for the nonlocal means. SIAM J. Imag. Sci. 4, 760–788 (2011).
doi: 10.1137/100790902
Krull, A., Vičar, T., Prakash, M., Lalit, M. & Jug, F. Probabilistic Noise2Void: unsupervised content-aware denoising. Front. Comput. Sci. https://doi.org/10.3389/fcomp.2020.00005 (2020).
Maier, O. et al. MedPy v.0.4.0 (2019).
El-Boustani, S. et al. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360, 1349–1354 (2018).
pubmed: 29930137 pmcid: 6366621 doi: 10.1126/science.aao0862
Blanco-Centurion, C. et al. Dynamic network activation of hypothalamic MCH neurons in REM sleep and exploratory behavior. J. Neurosci. 39, 4986–4998 (2019).
pubmed: 31036764 pmcid: 6670248 doi: 10.1523/JNEUROSCI.0305-19.2019
Kellner, V. et al. Dual metabotropic glutamate receptor signaling enables coordination of astrocyte and neuron activity in developing sensory domains. Neuron 109, 2545–2555 (2021).
pubmed: 34245686 pmcid: 9083901 doi: 10.1016/j.neuron.2021.06.010
Makowski, D. et al. NeuroKit2: a Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689–1696 (2021).
pubmed: 33528817 doi: 10.3758/s13428-020-01516-y
Huang, C. Y., Chiu, N. C., Huang, F. Y., Chao, Y. C. & Chi, H. Prediction of coronary artery aneurysms in children with Kawasaki disease before starting initial treatment. Front. Pediatr. 9, 748467 (2021).
pubmed: 34660496 pmcid: 8515030 doi: 10.3389/fped.2021.748467
Jensen, T. P. et al. Multiplex imaging relates quantal glutamate release to presynaptic Ca
pubmed: 30926781 pmcid: 6441074 doi: 10.1038/s41467-019-09216-8
Dürst, C. D. et al. High-speed imaging of glutamate release with genetically encoded sensors. Nat. Protoc. 14, 1401–1424 (2019).
pubmed: 30988508 pmcid: 6751072 doi: 10.1038/s41596-019-0143-9
Shimaoka, D., Harris, K. D. & Carandini, M. Effects of arousal on mouse sensory cortex depend on modality. Cell Rep. 25, 3230 (2018).
pubmed: 30540954 pmcid: 6302665 doi: 10.1016/j.celrep.2018.11.105
Henneberger, C., Papouin, T., Oliet, S. H. R. & Rusakov, D. A. Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236 (2010).
pubmed: 20075918 pmcid: 2807667 doi: 10.1038/nature08673
Ledonne, A. & Mercuri, N. B. mGluR1-dependent long term depression in rodent midbrain dopamine neurons is regulated by neuregulin 1/ErbB signaling. Front. Mol. Neurosci. 11, 346 (2018).
pubmed: 30327588 pmcid: 6174199 doi: 10.3389/fnmol.2018.00346
Gu, Y. et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci. 15, 1700–1706 (2012).
pubmed: 23143513 pmcid: 3509272 doi: 10.1038/nn.3260
Rusina, E., Bernard, C. & Williamson, A. The kainic acid models of temporal lobe epilepsy. eNeuro 8, ENEURO.0337-20.2021 (2021).
pubmed: 33658312 pmcid: 8174050 doi: 10.1523/ENEURO.0337-20.2021
Sulzer, D., Sonders, M. S., Poulsen, N. W. & Galli, A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75, 406–433 (2005).
pubmed: 15955613 doi: 10.1016/j.pneurobio.2005.04.003

Auteurs

Roberta de Ceglia (R)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.

Ada Ledonne (A)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.

David Gregory Litvin (DG)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland.

Barbara Lykke Lind (BL)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Giovanni Carriero (G)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.

Emanuele Claudio Latagliata (EC)

Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.

Erika Bindocci (E)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.

Maria Amalia Di Castro (MA)

Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.

Iaroslav Savtchouk (I)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.

Ilaria Vitali (I)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.

Anurag Ranjak (A)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.

Mauro Congiu (M)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.

Tara Canonica (T)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.

William Wisden (W)

Department of Life Sciences and UK Dementia Research Institute, Imperial College London, London, UK.

Kenneth Harris (K)

UCL Queen Square Institute of Neurology, University College London, London, UK.

Manuel Mameli (M)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.

Nicola Mercuri (N)

Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.
Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.

Ludovic Telley (L)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland. ludovic.telley@unil.ch.

Andrea Volterra (A)

Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland. andrea.volterra@unil.ch.
Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland. andrea.volterra@unil.ch.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH