Targeted Activation of Arabidopsis Genes by a Potent CRISPR-Act3.0 System.
Act3.0
Arabidopsis
CRISPR
CRISPR activation
CRISPR/Cas9
Floral dip
Gain-of-function
Multiplex gene activation
Targeted gene activation
Transcriptional regulation
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
11
9
2023
pubmed:
8
9
2023
entrez:
8
9
2023
Statut:
ppublish
Résumé
The CRISPR/Cas system has emerged as a versatile platform for sequence-specific genome engineering in plants. Beyond genome editing, CRISPR/Cas systems, based on nuclease-deficient Cas9 (dCas9), have been repurposed as an RNA-guided platform for transcriptional regulation. CRISPR activation (CRISPRa) represents a novel gain-of-function (GOF) strategy, conferring robust over-expression of the target gene within its native chromosomal context. The CRISPRa systems enable precise, scalable, and robust RNA-guided transcription activation, holding great potential for a variety of fundamental and translational research. In this chapter, we provide a step-by-step guide for efficient gene activation in Arabidopsis based on a highly robust CRISPRa system, CRISPR-Act3.0. We present detailed procedures on the sgRNA design, CRISPR-Act3.0 system construction, Agrobacterium-mediated transformation of Arabidopsis using the floral dip method, and identification of desired transgenic plants.
Identifiants
pubmed: 37682467
doi: 10.1007/978-1-0716-3354-0_3
doi:
Substances chimiques
RNA, Guide, CRISPR-Cas Systems
0
RNA
63231-63-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
27-40Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15. https://doi.org/10.1038/nrm.2015.2
doi: 10.1038/nrm.2015.2
pubmed: 26670017
Pan C, Sretenovic S, Qi Y (2021) CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr Opin Plant Biol 60:101980. https://doi.org/10.1016/j.pbi.2020.101980
doi: 10.1016/j.pbi.2020.101980
pubmed: 33401227
Lowder LG, Zhou J, Zhang Y et al (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol Plant 11:245–256. https://doi.org/10.1016/j.molp.2017.11.010
doi: 10.1016/j.molp.2017.11.010
pubmed: 29197638
Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
doi: 10.1016/j.cell.2013.02.022
pubmed: 23452860
pmcid: 3664290
Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588. https://doi.org/10.1038/nature14136
doi: 10.1038/nature14136
pubmed: 25494202
Li Z, Zhang D, Xiong X et al (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930–936. https://doi.org/10.1038/s41477-017-0046-0
doi: 10.1038/s41477-017-0046-0
pubmed: 29158545
pmcid: 5894343
Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-08736-7
doi: 10.1038/s41467-019-08736-7
Selma S, Bernabé-Orts JM, Vazquez-Vilar M et al (2019) Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR /Cas9-based Programmable Transcriptional Activator. Plant Biotechnol J 1–3:1703. https://doi.org/10.1111/pbi.13138
doi: 10.1111/pbi.13138
Pan C, Wu X, Markel K et al (2021) CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nat Plants 7:942–953. https://doi.org/10.1038/s41477-021-00953-7
doi: 10.1038/s41477-021-00953-7
pubmed: 34168320
Zhang X, Henriques R, Lin SS et al (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646. https://doi.org/10.1038/nprot.2006.97
doi: 10.1038/nprot.2006.97
pubmed: 17406292
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2
doi: 10.1006/meth.2001.1262
pubmed: 11846609