Targeted Activation of Arabidopsis Genes by a Potent CRISPR-Act3.0 System.

Act3.0 Arabidopsis CRISPR CRISPR activation CRISPR/Cas9 Floral dip Gain-of-function Multiplex gene activation Targeted gene activation Transcriptional regulation

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 11 9 2023
pubmed: 8 9 2023
entrez: 8 9 2023
Statut: ppublish

Résumé

The CRISPR/Cas system has emerged as a versatile platform for sequence-specific genome engineering in plants. Beyond genome editing, CRISPR/Cas systems, based on nuclease-deficient Cas9 (dCas9), have been repurposed as an RNA-guided platform for transcriptional regulation. CRISPR activation (CRISPRa) represents a novel gain-of-function (GOF) strategy, conferring robust over-expression of the target gene within its native chromosomal context. The CRISPRa systems enable precise, scalable, and robust RNA-guided transcription activation, holding great potential for a variety of fundamental and translational research. In this chapter, we provide a step-by-step guide for efficient gene activation in Arabidopsis based on a highly robust CRISPRa system, CRISPR-Act3.0. We present detailed procedures on the sgRNA design, CRISPR-Act3.0 system construction, Agrobacterium-mediated transformation of Arabidopsis using the floral dip method, and identification of desired transgenic plants.

Identifiants

pubmed: 37682467
doi: 10.1007/978-1-0716-3354-0_3
doi:

Substances chimiques

RNA, Guide, CRISPR-Cas Systems 0
RNA 63231-63-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

27-40

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15. https://doi.org/10.1038/nrm.2015.2
doi: 10.1038/nrm.2015.2 pubmed: 26670017
Pan C, Sretenovic S, Qi Y (2021) CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr Opin Plant Biol 60:101980. https://doi.org/10.1016/j.pbi.2020.101980
doi: 10.1016/j.pbi.2020.101980 pubmed: 33401227
Lowder LG, Zhou J, Zhang Y et al (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol Plant 11:245–256. https://doi.org/10.1016/j.molp.2017.11.010
doi: 10.1016/j.molp.2017.11.010 pubmed: 29197638
Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
doi: 10.1016/j.cell.2013.02.022 pubmed: 23452860 pmcid: 3664290
Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588. https://doi.org/10.1038/nature14136
doi: 10.1038/nature14136 pubmed: 25494202
Li Z, Zhang D, Xiong X et al (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930–936. https://doi.org/10.1038/s41477-017-0046-0
doi: 10.1038/s41477-017-0046-0 pubmed: 29158545 pmcid: 5894343
Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-08736-7
doi: 10.1038/s41467-019-08736-7
Selma S, Bernabé-Orts JM, Vazquez-Vilar M et al (2019) Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR /Cas9-based Programmable Transcriptional Activator. Plant Biotechnol J 1–3:1703. https://doi.org/10.1111/pbi.13138
doi: 10.1111/pbi.13138
Pan C, Wu X, Markel K et al (2021) CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nat Plants 7:942–953. https://doi.org/10.1038/s41477-021-00953-7
doi: 10.1038/s41477-021-00953-7 pubmed: 34168320
Zhang X, Henriques R, Lin SS et al (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646. https://doi.org/10.1038/nprot.2006.97
doi: 10.1038/nprot.2006.97 pubmed: 17406292
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2
doi: 10.1006/meth.2001.1262 pubmed: 11846609

Auteurs

Changtian Pan (C)

Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.

Yiping Qi (Y)

Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA. yiping@umd.edu.
Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA. yiping@umd.edu.

Articles similaires

Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition

Classifications MeSH