Functional effects of haemoglobin can be rescued by haptoglobin in an in vitro model of subarachnoid haemorrhage.


Journal

Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R

Informations de publication

Date de publication:
10 2023
Historique:
revised: 30 07 2023
received: 19 04 2023
accepted: 31 07 2023
medline: 23 10 2023
pubmed: 13 9 2023
entrez: 13 9 2023
Statut: ppublish

Résumé

During subarachnoid haemorrhage, a blood clot forms in the subarachnoid space releasing extracellular haemoglobin (Hb), which causes oxidative damage and cell death in surrounding tissues. High rates of disability and cognitive decline in SAH survivors are attributed to loss of neurons and functional connections during secondary brain injury. Haptoglobin sequesters Hb for clearance, but this scavenging system is overwhelmed after a haemorrhage. Whilst exogenous haptoglobin application can attenuate cytotoxicity of Hb in vitro and in vivo, the functional effects of sub-lethal Hb concentrations on surviving neurons and whether cellular function can be protected with haptoglobin treatment remain unclear. Here we use cultured neurons to investigate neuronal health and function across a range of Hb concentrations to establish the thresholds for cellular damage and investigate synaptic function. Hb impairs ATP concentrations and cytoskeletal structure. At clinically relevant but sub-lethal Hb concentrations, we find that synaptic AMPAR-driven currents are reduced, accompanied by a reduction in GluA1 subunit expression. Haptoglobin co-application can prevent these deficits by scavenging free Hb to reduce it to sub-threshold concentrations and does not need to be present at stoichiometric amounts to achieve efficacy. Haptoglobin itself does not impair measures of neuronal health and function at any concentration tested. Our data highlight a role for Hb in modifying synaptic function in surviving neurons, which may link to impaired cognition or plasticity after SAH and support the development of haptoglobin as a therapy for subarachnoid haemorrhage.

Identifiants

pubmed: 37702203
doi: 10.1111/jnc.15936
doi:

Substances chimiques

Haptoglobins 0
Hemoglobins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

90-103

Informations de copyright

© 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

Références

Akeret, K., Buzzi, R. M., Schaer, C. A., Thomson, B. R., Vallelian, F., Wang, S., Willms, J., Sebök, M., Held, U., Deuel, J. W., Humar, R., Regli, L., Keller, E., Hugelshofer, M., & Schaer, D. J. (2021). Cerebrospinal fluid hemoglobin drives subarachnoid hemorrhage-related secondary brain injury. Journal of Cerebral Blood Flow and Metabolism, 41, 3000-3015.
Al-Khindi, T., Macdonald, R. L., & Schweizer, T. A. (2010). Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke, 41, 519-536.
Bai, Q., Liu, J., & Wang, G. (2020). Ferroptosis, a regulated neuronal cell death type after intracerebral hemorrhage. Frontiers in Cellular Neuroscience, 14, 374.
Belcher, J. D., Chen, C., Nguyen, J., Milbauer, L., Abdulla, F., Alayash, A. I., Smith, A., Nath, K. A., Hebbel, R. P., & Vercellotti, G. M. (2014). Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood, 123, 377-390.
Benesch, R. E., Benesch, R., & Yung, S. (1973). Equations for the spectrophotometric analysis of hemoglobin mixtures. Analytical Biochemistry, 55, 245-248.
Benke, T., & Traynelis, S. F. (2019). AMPA-type glutamate receptor conductance changes and plasticity: Still a lot of noise. Neurochemical Research, 44, 539-548.
Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 31-39.
Budohoski, K. P., Guilfoyle, M., Helmy, A., Huuskonen, T., Czosnyka, M., Kirollos, R., Menon, D. K., Pickard, J. D., & Kirkpatrick, P. J. (2014). The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. Journal of Neurology, Neurosurgery, and Psychiatry, 85, 1343-1353.
Buehler, P. W., Humar, R., & Schaer, D. J. (2020). Haptoglobin Therapeutics and Compartmentalization of Cell-Free Hemoglobin Toxicity. Trends in Molecular Medicine, 26, 683-697.
Chen-Roetling, J., & Regan, R. F. (2016). Haptoglobin increases the vulnerability of CD163-expressing neurons to hemoglobin. Journal of Neurochemistry, 139, 586-595.
Diringer, M. N. (2009). Management of aneurysmal subarachnoid hemorrhage. Critical Care Medicine, 37, 432-440.
Diringer, M. N., Bleck, T. P., Hemphill, J. C., Menon, D., Shutter, L., Vespa, P., Bruder, N., Connolly, E. S., Citerio, G., Gress, D., Hänggi, D., Hoh, B. L., Lanzino, G., Le Roux, P., Rabinstein, A., Schmutzhard, E., Stocchetti, N., Suarez, J. I., Treggiari, M., … Zipfel, G. (2011). Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference. Neurocritical Care, 15, 211-240.
Ellmore, T. M., Rohlffs, F., & Khursheed, F. (2013). FMRI of working memory impairment after recovery from subarachnoid hemorrhage. Frontiers in Neurology, 4, 179.
English, S. W. (2020). Long-term outcome and economic burden of aneurysmal subarachnoid hemorrhage: Are we only seeing the tip of the iceberg? Neurointensive Care, 33, 37-38.
Fassbender, K., Hodapp, B., Rossol, S., Bertsch, T., Schmeck, J., Schütt, S., Fritzinger, M., Horn, P., Vajkoczy, P., Kreisel, S., Brunner, J., Schmiedek, P., & Hennerici, M. (2001). Inflammatory cytokines in subarachnoid haemorrhage: Association with abnormal blood flow velocities in basal cerebral arteries. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 534-537.
Gaastra, B., Glazier, J., Bulters, D., & Galea, I. (2017). Haptoglobin genotype and outcome after subarachnoid haemorrhage: New insights from a meta-analysis. Oxidative Medicine and Cellular Longevity, 2017, 1-9.
Galea, I. (2021). The blood-brain barrier in systemic infection and inflammation. Cellular & Molecular Immunology, 18, 2489-2501.
Galea, I., Durnford, A., Glazier, J., Mitchell, S., Kohli, S., Foulkes, L., Norman, J., Darekar, A., Love, S., Bulters, D. O., Nicoll, J. A. R., & Boche, D. (2022). Iron deposition in the brain after aneurysmal subarachnoid hemorrhage. Stroke, 53, 1633-1642.
Galea, J., Cruickshank, G., Teeling, J. L., Boche, D., Garland, P., Perry, V. H., & Galea, I. (2012). The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage. Journal of Neurochemistry, 121, 785-792.
Gando, S., & Tedo, I. (1994). The effects of massive transfusion and haptoglobin therapy on hemolysis in trauma patients. Surgery Today, 24, 785-790.
Garland, P., Broom, L. J., Quraishe, S., Dalton, P. D., Skipp, P., Newman, T. A., & Perry, V. H. (2012). Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton. PLoS One, 7, e47552.
Garland, P., Morton, M., Zolnourian, A., Durnford, A., Gaastra, B., Toombs, J., Heslegrave, A. J., More, J., Zetterberg, H., Bulters, D. O., & Galea, I. (2021). Neurofilament light predicts neurological outcome after subarachnoid haemorrhage. Brain, 144, 761-768.
Garland, P., Morton, M. J., Haskins, W., Zolnourian, A., Durnford, A., Gaastra, B., Toombs, J., Heslegrave, A. J., More, J., Okemefuna, A. I., Teeling, J. L., Graversen, J. H., Zetterberg, H., Moestrup, S. K., Bulters, D. O., & Galea, I. (2020). Haemoglobin causes neuronal damage in vivo which is preventable by haptoglobin. Brain Communications, 2, fcz053.
Garton, T. P., He, Y., Garton, H. J. L., Keep, R. F., Xi, G., & Strahle, J. M. (2016). Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Research, 1635, 86-94.
Gu, J., Lee, C. W., Fan, Y., Komlos, D., Tang, X., Sun, C., Yu, K., Hartzell, H. C., Chen, G., Bamburg, J. R., & Zheng, J. Q. (2010). ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nature Neuroscience, 13, 1208-1215.
Hackett, M. L., & Anderson, C. S. (2000). Health outcomes 1 year after subarachnoid hemorrhage an international population-based study. Neurology, 55, 658-662.
Han, S. M., Wan, H., Kudo, G., Foltz, W. D., Vines, D. C., Green, D. E., Zoerle, T., Tariq, A., Brathwaite, S., D'Abbondanza, J., Ai, J., & Macdonald, R. L. (2014). Molecular alterations in the hippocampus after experimental subarachnoid hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 34, 108-117.
Hilgenberg, L. G. W. W., & Smith, M. A. (2007). Preparation of dissociated mouse cortical neuron cultures. Journal of Visualized Experiments, 10, e562. https://doi.org/10.3791/562
Hou, Q., Gilbert, J., & Man, H. Y. (2011). Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single-synaptic activation. Neuron, 72, 806-818.
Hugelshofer, M., Buzzi, R. M., Schaer, C. A., Richter, H., Akeret, K., Anagnostakou, V., Mahmoudi, L., Vaccani, R., Vallelian, F., Deuel, J. W., Kronen, P. W., Kulcsar, Z., Regli, L., Baek, J. H., Pires, I. S., Palmer, A. F., Dennler, M., Humar, R., Buehler, P. W., … Schaer, D. J. (2019). Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm. The Journal of Clinical Investigation, 129, 5219.
Hugelshofer, M., Sikorski, C. M., Seule, M., Deuel, J., Muroi, C. I., Seboek, M., Akeret, K., Buzzi, R., Regli, L., Schaer, D. J., & Keller, E. (2018). Cell-free oxyhemoglobin in cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: biomarker and potential therapeutic target. World Neurosurgery, 120, e660-e666.
Hui, C. W., Zhang, Y., & Herrup, K. (2016). Non-neuronal cells are required to mediate the effects of neuroinflammation: Results from a neuron-enriched culture system. PLoS One, 11, e0147134.
Janick, P. A., Hackney, D. B., Grossman, R. I., & Asakura, T. (1991). MR imaging of various oxidation states of intracellular and extracellular hemoglobin. American Journal of Neuroradiology, 12, 891-897.
Jeffcote, T., & Ho, K. M. (2010). Associations between cerebrospinal fluid protein concentrations, serum albumin concentrations and intracranial pressure in neurotrauma and intracranial haemorrhage. Anaesth. Intensive Care, 38, 274-279.
Jellinger, K. A. (1999). The role of iron in neurodegeneration. Prospects for pharmacotherapy of Parkinson's disease. Drugs and Aging, 14, 115-140.
Joerk, A., Seidel, R. A., Walter, S. G., Wiegand, A., Kahnes, M., Klopfleisch, M., Kirmse, K., Pohnert, G., Westerhausen, M., Witte, O. W., & Holthoff, K. (2014). Impact of heme and heme degradation products on vascular diameter in mouse visual cortex. Journal of the American Heart Association, 3, e001220.
Jungner, Å., Vallius Kvist, S., Romantsik, O., Bruschettini, M., Ekström, C., Bendix, I., Herz, J., Felderhoff-Mueser, U., Bibic, A., In'T Zandt, R., Gram, M., & Ley, D. (2020). White matter brain development after exposure to circulating cell-free hemoglobin and hyperoxia in a rat pup model. Developmental Neuroscience, 41, 234-246.
Kaczmarek, L. K., Jennings, K. R., Strumwasser, F., Nairn, A. C., Walter, U., Wilson, F. D., & Greengard, P. (1980). Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proceedings of the National Academy of Sciences, 77, 7487-7491.
Kazmi, N., Koda, Y., Ndiaye, N. C., Visvikis-Siest, S., Morton, M. J., Gaunt, T. R., & Galea, I. (2019). Genetic determinants of circulating haptoglobin concentration. Clinica Chimica Acta, 494, 138-142.
Kessels, H. W., & Malinow, R. (2009). Synaptic AMPA receptor plasticity and behavior. Neuron, 61, 340-350.
Kwon, M. S., Woo, S. K., Kurland, D. B., Yoon, S. H., Palmer, A. F., Banerjee, U., Iqbal, S., Ivanova, S., Gerzanich, V., & Simard, J. M. (2015). Methemoglobin is an endogenous Toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. International Journal of Molecular Sciences, 16, 5028-5046.
Kwon, S. K., & Kim, M. W. (2014). Pseudo-Froin's syndrome, xanthochromia with high protein level of cerebrospinal fluid. Korean Journal of Anesthesiology, 67, S58.
Li, Q., Han, X., Lan, X., Gao, Y., Wan, J., Durham, F., Cheng, T., Yang, J., Wang, Z., Jiang, C., Ying, M., Koehler, R. C., Stockwell, B. R., & Wang, J. (2017). Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight, 2, e90777.
Lu, W., Shi, Y., Jackson, A. C., Bjorgan, K., During, M. J., Sprengel, R., Seeburg, P. H., & Nicoll, R. A. (2009). Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron, 62, 254-268.
Luoma, A., & Reddy, U. (2013). Acute management of aneurysmal subarachnoid haemorrhage. Continuing Education in Anaesthesia, Critical Care and Pain, 13, 52-58.
McCudden, C. R., Brooks, J., Figurado, P., & Bourque, P. R. (2017). Cerebrospinal fluid total protein reference intervals derived from 20 years of patient data. Clinical Chemistry, 63, 1856-1865.
Moestrup, S., & Møller, H. (2004). CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Annals of Medicine, 36, 347-354.
Nadkarni, N. A., Maas, M. B., Batra, A., Kim, M., Manno, E. M., Sorond, F. A., Prabhakaran, S., Naidech, A. M., & Liotta, E. M. (2020). Elevated cerebrospinal fluid protein is associated with unfavorable functional outcome in spontaneous subarachnoid hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 29, 104605.
Nagy, Z., & Nardai, S. (2017). Cerebral ischemia/repefusion injury: From bench space to bedside. Brain Research Bulletin, 134, 30-37.
Neifert, S. N., Chapman, E. K., Martini, M. L., Shuman, W. H., Schupper, A. J., Oermann, E. K., Mocco, J., & Macdonald, R. L. (2021). Aneurysmal subarachnoid hemorrhage: the Last decade. Translational Stroke Research, 12, 428-446.
Patel, B. N., Dunn, R. J., Jeong, S. Y., Zhu, Q., Julien, J. P., & David, S. (2002). Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. The Journal of Neuroscience, 22, 6578-6586.
Penke, L., Valdés Hernandéz, M. C., Maniega, S. M., Gow, A. J., Murray, C., Starr, J. M., Bastin, M. E., Deary, I. J., & Wardlaw, J. M. (2012). Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiology of Aging, 33, 510-517.e2.
Petridis, A. K., Kamp, M. A., Cornelius, J. F., Beez, T., Beseoglu, K., Turowski, B., & Steiger, H. J. (2017). Aneurysmal subarachnoid hemorrhage-diagnosis and treatment. Deutsches Ärzteblatt International, 114, 226-235.
Pluta, R. M., Afshar, J. K. B., Boock, R., & Oldfield, E. H. (1998). Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage. Journal of Neurochemistry, 88, 557-561.
Regan, R. F., & Guo, Y. (1998). Toxic effect of hemoglobin on spinal cord neurons in culture. Journal of Neurotrauma, 15, 645-653.
Regan, R. F., & Panter, S. S. (1993). Neurotoxicity of hemoglobin in cortical cell culture. Neuroscience Letters, 153, 219-222.
Regan, R. F., & Scott Panter, S. (1996). Hemoglobin potentiates excitotoxic injury in cortical cell culture. Journal of Neurotrauma, 13, 223-231.
Righy, C., Bozza, T. M., Oliveira, M. F., & Bozza, F. A. (2015). Molecular, cellular and clinical aspects of intracerebral hemorrhage: are the enemies within? Current Neuropharmacology, 14, 392-402.
Sadleir, K. R., Kandalepas, P. C., Buggia-Prévot, V., Nicholson, D. A., Thinakaran, G., & Vassar, R. (2016). Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer's disease. Acta Neuropathologica, 132, 235-256.
Sadrzadeh, S. M. H., & Bozorgmehr, J. (2004). Haptoglobin phenotypes in health and disorders. American Journal of Clinical Pathology, 121, S97-S104.
Sasaki, T., Hoffmann, U., Kobayashi, M., Sheng, H., Ennaceur, A., Lombard, F. W., & Warner, D. S. (2016). Long-term cognitive deficits after subarachnoid hemorrhage in rats. Neurocritical Care, 25, 293-305.
Schaer, C. A., Jeger, V., Gentinetta, T., Spahn, D. R., Vallelian, F., Rudiger, A., & Schaer, D. J. (2021). Haptoglobin treatment prevents cell-free hemoglobin exacerbated mortality in experimental rat sepsis. Intensive Care Medicine Experimental, 9, 1-4.
Schaer, D. J., Buehler, P. W., Alayash, A. I., Belcher, J. D., & Vercellotti, G. M. (2013). Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood, 121, 1276-1284.
Schatlo, B., Dreier, J. P., Gläsker, S., Fathi, A. R., Moncrief, T., Oldfield, E. H., Vortmeyer, A. O., & Pluta, R. M. (2010). Report of selective cortical infarcts in the primate clot model of vasospasm after subarachnoid hemorrhage. Neurosurgery, 67, 721-728.
Schilling, T., & Eder, C. (2015). Microglial K+ channel expression in young adult and aged mice. Glia, 63, 664-672.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 97(9), 676-682.
Shen, H., Chen, Z., Wang, Y., Gao, A., Li, H., Cui, Y., Zhang, L., Xu, X., Wang, Z., & Chen, G. (2015). Role of neurexin-1β and neuroligin-1 in cognitive dysfunction after subarachnoid hemorrhage in rats. Stroke, 46, 2607-2615.
Siddiqui, F. M., Bekker, S. V., & Qureshi, A. I. (2011). Neuroimaging of hemorrhage and vascular defects. Neurotherapeutics, 8, 28.
Sun, Z., Williams, D. J., Xu, B., & Gogos, J. A. (2018). Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Transl. Psychiatry, 8, 1-14.
Tariq, A., Ai, J., Chen, G., Sabri, M., Jeon, H., Shang, X., & Macdonald, R. L. (2010). Loss of long-term potentiation in the hippocampus after experimental subarachnoid hemorrhage in rats. Neuroscience, 165, 418-426.
Thomsen, J. H., Etzerodt, A., Svendsen, P., & Moestrup, S. K. (2013). The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxidative Medicine and Cellular Longevity, 2013, 523652.
Tidswell, P., Dias, P. S., Sagar, H. J., Mayes, A. R., & Battersby, R. D. E. (1995). Cognitive outcome after aneurysm rupture: Relationship to aneurysm site and perioperative complications. Neurology, 45, 876-882.
Van Gijn, J., & Rinkel, G. J. E. (2001). Subarachnoid haemorrhage: Diagnosis, causes and management. Brain, 124, 249-278.
Wang, X., Mori, T., Sumii, T., & Lo, E. H. (2002). Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: Caspase activation and oxidative stress. Stroke, 33, 1882-1888.
Wenthold, R. J., Petralia, R. S., Blahos, J., & Niedzielski, A. S. (1996). Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. The Journal of Neuroscience, 16, 1982-1989.
Winchester, G., Liu, S., Steele, O.G., Aziz, W., & Penn, A. (2020). Eventer. Software for the detection of spontaneous synaptic events measured by electrophysiology or imaging, https://doi.org/10.5281/ZENODO.3991677.
Yeh, L. H., & Alayash, A. I. (2003). Redox side reactions of haemoglobin and cell signalling mechanisms. Journal of Internal Medicine, 253, 518-526.
Yip, S., Ip, J. K. H., & Sastry, B. R. (1996). Electrophysiological actions of hemoglobin on rat hippocampal CA1 pyramidal neurons. Brain Research, 713, 134-142.
You, W., Wang, Z., Li, H., Shen, H., Xu, X., Jia, G., & Chen, G. (2016). Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats. Journal of the Neurological Sciences, 367, 224-231.
Yu, J., Guo, Y., Sun, M., Li, B., Zhang, Y., & Li, C. (2009). Iron is a potential key mediator of glutamate excitotoxicity in spinal cord motor neurons. Brain Research, 1257, 102-107.
Zhang, D., Hou, Q., Wang, M., Lin, A., Jarzylo, L., Navis, A., Raissi, A., Liu, F., & Man, H. Y. (2009). Na,K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. The Journal of Neuroscience, 29, 4498-4511.
Zhou, J., Guo, P., Guo, Z., Sun, X., Chen, Y., & Feng, H. (2022). Fluid metabolic pathways after subarachnoid hemorrhage. Journal of Neurochemistry, 160, 13-33.
Zille, M., Karuppagounder, S. S., Chen, Y., Gough, P. J., Bertin, J., Finger, J., Milner, T. A., Jonas, E. A., & Ratan, R. R. (2017). Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke, 48, 1033-1043.

Auteurs

Hannah Warming (H)

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

Katrin Deinhardt (K)

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.

Patrick Garland (P)

Bio Products Laboratory Limited, Elstree, UK.

John More (J)

Bio Products Laboratory Limited, Elstree, UK.

Diederik Bulters (D)

Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.

Ian Galea (I)

Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK.

Mariana Vargas-Caballero (M)

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH