Automated evaluation for rapid implementation of knowledge-based radiotherapy planning models.
VMAT
automation
autoplanning
clinical scripting
knowledge-based planning
Journal
Journal of applied clinical medical physics
ISSN: 1526-9914
Titre abrégé: J Appl Clin Med Phys
Pays: United States
ID NLM: 101089176
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
18
04
2023
accepted:
29
08
2023
medline:
11
10
2023
pubmed:
13
9
2023
entrez:
13
9
2023
Statut:
ppublish
Résumé
Knowledge-based planning (KBP) offers the ability to predict dose-volume metrics based on information extracted from previous plans, reducing plan variability and improving plan quality. As clinical integration of KBP is increasing there is a growing need for quantitative evaluation of KBP models. A .NET-based application, RapidCompare, was created for automated plan creation and analysis of Varian RapidPlan models. RapidCompare was designed to read calculation parameters and a list of reference plans. The tool copies the reference plan field geometry and structure set, applies the RapidPlan model, optimizes the KBP plan, and generates data for quantitative evaluation of dose-volume metrics. A cohort of 85 patients, divided into training (50), testing (10), and validation (25) groups, was used to demonstrate the utility of RapidCompare. After training and tuning, the KBP model was paired with three different optimization templates to compare various planning strategies in the validation cohort. All templates used the same set of constraints for the planning target volume (PTV). For organs-at-risk, the optimization template provided constraints using the whole dose-volume histogram (DVH), fixed-dose/volume points, or generalized equivalent uniform dose (gEUD). The resulting plans from each optimization approach were compared using DVH metrics. RapidCompare allowed for the automated generation of 75 total plans for comparison with limited manual intervention. In comparing optimization techniques, the Dose/Volume and Lines optimization templates generated plans with similar DVH metrics, with a slight preference for the Lines technique with reductions in heart V30Gy and spinal cord max dose. The gEUD model produced high target heterogeneity. Automated evaluation allowed for the exploration of multiple optimization templates in a larger validation cohort than would have been feasible using a manual approach. A final KBP model using line optimization objectives produced the highest quality plans without human intervention.
Identifiants
pubmed: 37703545
doi: 10.1002/acm2.14152
pmc: PMC10562024
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14152Informations de copyright
© 2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.
Références
Med Phys. 2021 Sep;48(9):5567-5573
pubmed: 34157138
Phys Med Biol. 2018 Dec 04;63(23):235022
pubmed: 30511663
Pract Radiat Oncol. 2019 Mar;9(2):e218-e227
pubmed: 30562615
Int J Radiat Oncol Biol Phys. 2020 Feb 1;106(2):430-439
pubmed: 31678227
Int J Radiat Oncol Biol Phys. 2018 Mar 15;100(4):1067-1074
pubmed: 29485048
J Appl Clin Med Phys. 2023 Oct;24(10):e14152
pubmed: 37703545
Med Phys. 2019 May;46(5):1972-1983
pubmed: 30870586
Med Phys. 2021 Sep;48(9):5549-5561
pubmed: 34156719
Med Phys. 2012 Mar;39(3):1386-409
pubmed: 22380372
Phys Imaging Radiat Oncol. 2018 Feb 22;5:37-43
pubmed: 33458367
Int J Radiat Oncol Biol Phys. 2017 Jan 1;97(1):164-172
pubmed: 27979445
J Appl Clin Med Phys. 2022 Jun;23(6):e13614
pubmed: 35488508
Pract Radiat Oncol. 2023 May-Jun;13(3):e282-e291
pubmed: 36697347
Phys Med Biol. 2019 Mar 18;64(6):065020
pubmed: 30703760
Int J Radiat Oncol Biol Phys. 2015 Mar 1;91(3):612-20
pubmed: 25680603
Med Phys. 2019 Jun;46(6):2760-2775
pubmed: 30963580
Pract Radiat Oncol. 2021 Mar-Apr;11(2):e163-e171
pubmed: 33632630