Genomics Reveals Complex Population History and Unexpected Diversity of Eurasian Otters (Lutra lutra) in Britain Relative to Genetic Methods.
bottleneck
demographic history
genetic tools
population genomics
reintroductions
Journal
Molecular biology and evolution
ISSN: 1537-1719
Titre abrégé: Mol Biol Evol
Pays: United States
ID NLM: 8501455
Informations de publication
Date de publication:
03 Nov 2023
03 Nov 2023
Historique:
medline:
9
11
2023
pubmed:
15
9
2023
entrez:
15
9
2023
Statut:
ppublish
Résumé
Conservation genetic analyses of many endangered species have been based on genotyping of microsatellite loci and sequencing of short fragments of mtDNA. The increase in power and resolution afforded by whole genome approaches may challenge conclusions made on limited numbers of loci and maternally inherited haploid markers. Here, we provide a matched comparison of whole genome sequencing versus microsatellite and control region (CR) genotyping for Eurasian otters (Lutra lutra). Previous work identified four genetically differentiated "stronghold" populations of otter in Britain, derived from regional populations that survived the population crash of the 1950s-1980s. Using whole genome resequencing data from 45 samples from across the British stronghold populations, we confirmed some aspects of population structure derived from previous marker-driven studies. Importantly, we showed that genomic signals of the population crash bottlenecks matched evidence from otter population surveys. Unexpectedly, two strongly divergent mitochondrial lineages were identified that were undetectable using CR fragments, and otters in the east of England were genetically distinct and surprisingly variable. We hypothesize that this previously unsuspected variability may derive from past releases of Eurasian otters from other, non-British source populations in England around the time of the population bottleneck. Our work highlights that even reasonably well-studied species may harbor genetic surprises, if studied using modern high-throughput sequencing methods.
Identifiants
pubmed: 37713621
pii: 7275014
doi: 10.1093/molbev/msad207
pmc: PMC10630326
pii:
doi:
Substances chimiques
DNA, Mitochondrial
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
Références
Mol Ecol. 1998 Sep;7(9):1248-51
pubmed: 9734080
Genome Biol. 2018 Sep 11;19(1):131
pubmed: 30205843
Mol Biol Evol. 2020 Dec 16;37(12):3642-3653
pubmed: 32642779
Proc Natl Acad Sci U S A. 1981 Jan;78(1):454-8
pubmed: 6165991
Mol Ecol Resour. 2008 Jan;8(1):103-6
pubmed: 21585727
Biol Rev Camb Philos Soc. 2019 Jun;94(3):849-873
pubmed: 30467930
Nucleic Acids Res. 2017 Feb 28;45(4):e18
pubmed: 28204566
Mitochondrial DNA B Resour. 2021 Jun 21;6(7):2066-2068
pubmed: 34212100
Mol Ecol. 2008 Sep;17(17):3808-17
pubmed: 18647238
Nat Rev Genet. 2018 Apr;19(4):220-234
pubmed: 29335644
Bioinformatics. 2010 Feb 1;26(3):419-20
pubmed: 20080509
PLoS One. 2016 Mar 03;11(3):e0149341
pubmed: 26938434
Mol Ecol. 2023 Aug;32(15):4133-4150
pubmed: 37246949
Mol Ecol. 2017 Oct;26(20):5820-5841
pubmed: 28815918
PeerJ. 2014 Mar 04;2:e281
pubmed: 24688859
Bioinformatics. 2019 Feb 1;35(3):526-528
pubmed: 30016406
Nat Biotechnol. 2018 Nov;36(10):983-987
pubmed: 30247488
Evol Appl. 2022 Nov 15;15(12):2125-2141
pubmed: 36540646
J Hered. 2004 Sep-Oct;95(5):430-5
pubmed: 15388770
R Soc Open Sci. 2022 Jun 15;9(6):211888
pubmed: 35719890
BMC Genomics. 2020 Jun 1;21(1):382
pubmed: 32487020
J Hered. 2000 Jan-Feb;91(1):31-5
pubmed: 10739121
BMC Genomics. 2018 Jan 5;19(1):22
pubmed: 29304727
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4):
pubmed: 35042805
Mol Ecol. 2018 Nov;27(22):4430-4443
pubmed: 30307076
BMC Bioinformatics. 2011 Jun 18;12:246
pubmed: 21682921
Wellcome Open Res. 2020 Feb 19;5:33
pubmed: 32258427
J Hered. 2021 Dec 17;112(7):575-589
pubmed: 34628509
Gigascience. 2021 Feb 16;10(2):
pubmed: 33590861
Bioinformatics. 2011 Aug 1;27(15):2156-8
pubmed: 21653522
Curr Biol. 2022 Aug 22;32(16):3650-3658.e4
pubmed: 35779528
Ambio. 2004 May;33(3):148-52
pubmed: 15151385
Mol Ecol Resour. 2015 Sep;15(5):1179-91
pubmed: 25684545
Genetics. 2000 Feb;154(2):931-42
pubmed: 10655242
PLoS One. 2016 Oct 26;11(10):e0162792
pubmed: 27783621
Mol Biol Evol. 2018 Feb 1;35(2):518-522
pubmed: 29077904
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
PLoS Genet. 2012 Jan;8(1):e1002453
pubmed: 22291602
Bioinformatics. 2008 Jun 1;24(11):1403-5
pubmed: 18397895
BMC Bioinformatics. 2004 Aug 19;5:113
pubmed: 15318951
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
Nat Commun. 2019 Oct 18;10(1):4769
pubmed: 31628318
Mol Ecol. 2019 May;28(10):2594-2609
pubmed: 30941840
Genetics. 2000 Jun;155(2):945-59
pubmed: 10835412
Evolution. 1984 Nov;38(6):1358-1370
pubmed: 28563791
Mol Ecol Resour. 2015 Sep;15(5):1172-8
pubmed: 25644761
Nucleic Acids Res. 2013 Jul;41(13):e129
pubmed: 23661685
Sci Rep. 2017 Aug 29;7(1):9614
pubmed: 28851952
Pathol Res Pract. 2006;202(7):523-9
pubmed: 16723190
Mol Biol Rep. 2010 Apr;37(4):1943-55
pubmed: 19757186
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Trends Genet. 2000 Dec;16(12):551-8
pubmed: 11102705
Nature. 2011 Jul 13;475(7357):493-6
pubmed: 21753753
Gigascience. 2017 Aug 1;6(8):1-8
pubmed: 28873965
Mol Ecol. 2021 Jan;30(1):62-82
pubmed: 33145846
BMC Genomics. 2017 Jan 11;18(1):69
pubmed: 28077077