Arginine methylation of HSPA8 by PRMT9 inhibits ferroptosis to accelerate hepatitis B virus-associated hepatocellular carcinoma progression.
Arginine methylation
CD44
Ferroptosis
HSPA8
Hepatitis B virus X
Hepatocellular carcinoma
PRMT9
Journal
Journal of translational medicine
ISSN: 1479-5876
Titre abrégé: J Transl Med
Pays: England
ID NLM: 101190741
Informations de publication
Date de publication:
15 09 2023
15 09 2023
Historique:
received:
22
06
2023
accepted:
31
07
2023
medline:
18
9
2023
pubmed:
16
9
2023
entrez:
15
9
2023
Statut:
epublish
Résumé
The hepatitis B virus X (HBx) protein is an established cause of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC). Whether arginine methylation regulates ferroptosis involved in HBx-induced HCC progression has not been reported. This study aimed to explore whether HBx-regulated protein arginine methyltransferase 9 (PRMT9) mediates the involvement of ferroptosis in the development of HCC. HBx inhibited ferroptosis through promoting PRMT9 expression in HCC cells. PRMT9 suppressed ferroptosis to accelerate HCC progression in vivo. PRMT9 targeted HSPA8 and enhanced arginine methylation of HSPA8 at R76 and R100 to regulate ferroptosis in HCC. HSPA8 overexpression altered the transcriptome profile of HepG2 cells, in particular, ferroptosis and immune-related pathways were significantly enriched by differentially expressed genes, including CD44. HSPA8 overexpression up-regulated CD44 expression and knockdown of CD44 significantly reversed the inhibition of ferroptosis caused by PRMT9 overexpression. In conclusion, HBx/PRMT9/HSPA8/CD44 axis is a vital signal pathway regulating ferroptosis in HCC cells. This study provides new opportunities and targets for the treatment of HBV-induced HCC.
Sections du résumé
BACKGROUND
The hepatitis B virus X (HBx) protein is an established cause of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC). Whether arginine methylation regulates ferroptosis involved in HBx-induced HCC progression has not been reported. This study aimed to explore whether HBx-regulated protein arginine methyltransferase 9 (PRMT9) mediates the involvement of ferroptosis in the development of HCC.
METHODS AND RESULTS
HBx inhibited ferroptosis through promoting PRMT9 expression in HCC cells. PRMT9 suppressed ferroptosis to accelerate HCC progression in vivo. PRMT9 targeted HSPA8 and enhanced arginine methylation of HSPA8 at R76 and R100 to regulate ferroptosis in HCC. HSPA8 overexpression altered the transcriptome profile of HepG2 cells, in particular, ferroptosis and immune-related pathways were significantly enriched by differentially expressed genes, including CD44. HSPA8 overexpression up-regulated CD44 expression and knockdown of CD44 significantly reversed the inhibition of ferroptosis caused by PRMT9 overexpression.
CONCLUSIONS
In conclusion, HBx/PRMT9/HSPA8/CD44 axis is a vital signal pathway regulating ferroptosis in HCC cells. This study provides new opportunities and targets for the treatment of HBV-induced HCC.
Identifiants
pubmed: 37715221
doi: 10.1186/s12967-023-04408-9
pii: 10.1186/s12967-023-04408-9
pmc: PMC10503172
doi:
Substances chimiques
Arginine
94ZLA3W45F
HSPA8 protein, human
0
HSC70 Heat-Shock Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
625Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Crit Rev Clin Lab Sci. 2002 Nov;39(6):527-79
pubmed: 12484499
ACS Appl Mater Interfaces. 2021 Nov 10;13(44):52374-52384
pubmed: 34714617
Hepatology. 2011 Mar;53(3):781-90
pubmed: 21374658
Nat Commun. 2020 May 14;11(1):2396
pubmed: 32409666
Biochem Biophys Res Commun. 2006 Apr 7;342(2):472-81
pubmed: 16487488
Cell Res. 2021 Feb;31(2):107-125
pubmed: 33268902
Liver Int. 2022 Dec;42(12):2889-2899
pubmed: 36254713
Nat Rev Cancer. 2013 Jan;13(1):37-50
pubmed: 23235912
Cell Chem Biol. 2020 Apr 16;27(4):420-435
pubmed: 32160513
Antimicrob Agents Chemother. 2010 May;54(5):2070-7
pubmed: 20176893
Cancer Res. 2023 Apr 4;83(7):1048-1061
pubmed: 36745032
Cancer Biol Med. 2014 Sep;11(3):182-90
pubmed: 25364579
Autophagy. 2013 Dec;9(12):1937-54
pubmed: 24121476
Gastroenterology. 2012 May;142(6):1264-1273.e1
pubmed: 22537432
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2996-3005
pubmed: 30718432
Mol Cell. 2016 Nov 17;64(4):673-687
pubmed: 27840030
Biomolecules. 2021 Dec 09;11(12):
pubmed: 34944493
Oncogene. 2021 May;40(20):3548-3563
pubmed: 33927350
Nat Chem. 2020 Oct;12(10):929-938
pubmed: 32747755
Nat Commun. 2021 Dec 17;12(1):7333
pubmed: 34921145
Nat Commun. 2015 Mar 04;6:6428
pubmed: 25737013
Cancer Sci. 2018 May;109(5):1414-1427
pubmed: 29603830
Biomed Pharmacother. 2018 May;101:648-655
pubmed: 29518611
J Neurophysiol. 2023 Apr 1;129(4):862-871
pubmed: 36919939
Nat Commun. 2022 Aug 26;13(1):5016
pubmed: 36028484
Cancer Res. 2019 Apr 15;79(8):1913-1924
pubmed: 30709928
J Biomed Sci. 2021 Oct 6;28(1):67
pubmed: 34615538
FEBS Open Bio. 2020 Sep;10(9):1810-1820
pubmed: 32657545
J Pharmacol Sci. 2020 Nov;144(3):172-182
pubmed: 32811746
Cancer Res. 2020 Mar 15;80(6):1342-1356
pubmed: 31969374
Curr Biol. 2021 Jul 26;31(14):3086-3097.e7
pubmed: 34087104
Redox Biol. 2022 Aug;54:102383
pubmed: 35797800
Cells. 2019 Aug 07;8(8):
pubmed: 31394830