Control of arbuscule development by a transcriptional negative feedback loop in Medicago.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
16 09 2023
16 09 2023
Historique:
received:
04
05
2022
accepted:
06
09
2023
medline:
18
9
2023
pubmed:
17
9
2023
entrez:
16
9
2023
Statut:
epublish
Résumé
Most terrestrial plants establish a symbiosis with arbuscular mycorrhizal fungi (AMF), which provide them with lipids and sugars in exchange for phosphorus and nitrogen. Nutrient exchange must be dynamically controlled to maintain a mutually beneficial relationship between the two symbiotic partners. The WRI5a and its homologues play a conserved role in lipid supply to AMF. Here, we demonstrate that the AP2/ERF transcription factor MtERM1 binds directly to AW-box and AW-box-like cis-elements in the promoters of MtSTR2 and MtSTR, which are required for host lipid efflux and arbuscule development. The EAR domain-containing transcription factor MtERF12 is also directly activated by MtERM1/MtWRI5a to negatively regulate arbuscule development, and the TOPLESS co-repressor is further recruited by MtERF12 through EAR motif to oppose MtERM1/MtWRI5a function, thereby suppressing arbuscule development. We therefore reveal an ERM1/WRI5a-ERF12-TOPLESS negative feedback loop that enables plants to flexibly control nutrient exchange and ensure a mutually beneficial symbiosis.
Identifiants
pubmed: 37717076
doi: 10.1038/s41467-023-41493-2
pii: 10.1038/s41467-023-41493-2
pmc: PMC10505183
doi:
Substances chimiques
Transcription Factors
0
Lipids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5743Informations de copyright
© 2023. Springer Nature Limited.
Références
Plant Cell. 2000 Mar;12(3):393-404
pubmed: 10715325
Curr Biol. 2016 Oct 24;26(20):2770-2778
pubmed: 27641773
New Phytol. 2019 Oct;224(1):396-408
pubmed: 31148173
Plant Physiol. 2010 Mar;152(3):1109-34
pubmed: 20097792
Science. 2020 Apr 3;368(6486):
pubmed: 32241923
Science. 2020 Feb 21;367(6480):
pubmed: 32079744
Cell. 2021 Oct 28;184(22):5527-5540.e18
pubmed: 34644527
Science. 2021 May 21;372(6544):864-868
pubmed: 34016782
Science. 2017 Jun 16;356(6343):1172-1175
pubmed: 28596307
Plant Cell. 2019 Apr;31(4):832-847
pubmed: 30837295
Plant Cell Physiol. 2010 Mar;51(3):341-53
pubmed: 20097910
Nat Commun. 2022 Jan 25;13(1):477
pubmed: 35078978
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
New Phytol. 2021 Aug;231(3):963-973
pubmed: 33909309
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9239-E9246
pubmed: 30209216
Curr Opin Plant Biol. 2018 Aug;44:137-144
pubmed: 29729528
Science. 2017 Jun 16;356(6343):1175-1178
pubmed: 28596311
Nature. 2011 Jan 6;469(7328):58-63
pubmed: 21209659
Epigenetics. 2011 Feb;6(2):141-6
pubmed: 20935498
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E5025-34
pubmed: 24297892
Mol Plant. 2010 May;3(3):563-75
pubmed: 20035035
BMC Plant Biol. 2009 Jan 22;9:10
pubmed: 19161626
Appl Environ Microbiol. 1998 Dec;64(12):5004-7
pubmed: 9835596
Cell Res. 2014 Jan;24(1):130-3
pubmed: 24343576
Nat Protoc. 2008;3(6):1018-25
pubmed: 18536649
New Phytol. 2017 Jun;214(4):1631-1645
pubmed: 28380681
Curr Biol. 2016 Apr 25;26(8):987-98
pubmed: 27020747
Nat Rev Microbiol. 2020 Nov;18(11):649-660
pubmed: 32694620
Plant Cell. 2010 Sep;22(9):3066-75
pubmed: 20870961
J Exp Bot. 2021 Jan 20;72(1):92-106
pubmed: 32459300
Plant Methods. 2005 Dec 18;1:13
pubmed: 16359558
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5
pubmed: 17242358
Curr Biol. 2017 Apr 24;27(8):1206-1212
pubmed: 28392110
Curr Biol. 2012 Dec 4;22(23):2236-41
pubmed: 23122845
Elife. 2017 Jul 20;6:
pubmed: 28726631
Plant Biotechnol J. 2021 Jun;19(6):1170-1182
pubmed: 33382517
Nat Rev Microbiol. 2008 Oct;6(10):763-75
pubmed: 18794914
Mol Plant. 2018 Nov 5;11(11):1344-1359
pubmed: 30292683
New Phytol. 2013 Aug;199(3):639-49
pubmed: 24010138
Plant Biotechnol J. 2019 Jul;17(7):1369-1379
pubmed: 30575262
Mol Plant Microbe Interact. 2001 Jun;14(6):695-700
pubmed: 11386364
Plant Cell Physiol. 2007 Dec;48(12):1790-802
pubmed: 17989085
Science. 2011 Aug 12;333(6044):880-2
pubmed: 21836016
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25779-25788
pubmed: 32999061
Plant J. 2009 Nov;60(3):476-87
pubmed: 19594710
Nat Commun. 2016 Sep 02;7:12636
pubmed: 27586842
Plant J. 2013 Dec;76(5):811-24
pubmed: 24112720
Nat Microbiol. 2019 Oct;4(10):1654-1660
pubmed: 31235957
Plant Cell. 2012 Oct;24(10):4236-51
pubmed: 23073651
Plant Cell. 2005 Aug;17(8):2384-96
pubmed: 15994908
Plant Cell. 2012 Dec;24(12):5007-23
pubmed: 23243127
Front Genet. 2018 Nov 30;9:590
pubmed: 30555515
Plant Cell. 2001 Aug;13(8):1959-68
pubmed: 11487705
Trends Plant Sci. 2022 Apr;27(4):319-321
pubmed: 34953721
Plant Cell. 2022 Mar 29;34(4):1250-1272
pubmed: 35099538
J Chem Ecol. 2012 Jun;38(6):651-64
pubmed: 22623151
Plant Cell. 2021 Nov 4;33(11):3470-3486
pubmed: 34469578
Science. 2020 Apr 17;368(6488):270-274
pubmed: 32299947
Plant Physiol. 2005 Sep;139(1):5-17
pubmed: 16166256
Plant Cell. 2010 May;22(5):1483-97
pubmed: 20453115
Mol Plant. 2022 Feb 7;15(2):225-227
pubmed: 34968731
J Exp Bot. 2017 Jul 20;68(16):4627-4634
pubmed: 28981783