Control of arbuscule development by a transcriptional negative feedback loop in Medicago.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
16 09 2023
Historique:
received: 04 05 2022
accepted: 06 09 2023
medline: 18 9 2023
pubmed: 17 9 2023
entrez: 16 9 2023
Statut: epublish

Résumé

Most terrestrial plants establish a symbiosis with arbuscular mycorrhizal fungi (AMF), which provide them with lipids and sugars in exchange for phosphorus and nitrogen. Nutrient exchange must be dynamically controlled to maintain a mutually beneficial relationship between the two symbiotic partners. The WRI5a and its homologues play a conserved role in lipid supply to AMF. Here, we demonstrate that the AP2/ERF transcription factor MtERM1 binds directly to AW-box and AW-box-like cis-elements in the promoters of MtSTR2 and MtSTR, which are required for host lipid efflux and arbuscule development. The EAR domain-containing transcription factor MtERF12 is also directly activated by MtERM1/MtWRI5a to negatively regulate arbuscule development, and the TOPLESS co-repressor is further recruited by MtERF12 through EAR motif to oppose MtERM1/MtWRI5a function, thereby suppressing arbuscule development. We therefore reveal an ERM1/WRI5a-ERF12-TOPLESS negative feedback loop that enables plants to flexibly control nutrient exchange and ensure a mutually beneficial symbiosis.

Identifiants

pubmed: 37717076
doi: 10.1038/s41467-023-41493-2
pii: 10.1038/s41467-023-41493-2
pmc: PMC10505183
doi:

Substances chimiques

Transcription Factors 0
Lipids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5743

Informations de copyright

© 2023. Springer Nature Limited.

Références

Plant Cell. 2000 Mar;12(3):393-404
pubmed: 10715325
Curr Biol. 2016 Oct 24;26(20):2770-2778
pubmed: 27641773
New Phytol. 2019 Oct;224(1):396-408
pubmed: 31148173
Plant Physiol. 2010 Mar;152(3):1109-34
pubmed: 20097792
Science. 2020 Apr 3;368(6486):
pubmed: 32241923
Science. 2020 Feb 21;367(6480):
pubmed: 32079744
Cell. 2021 Oct 28;184(22):5527-5540.e18
pubmed: 34644527
Science. 2021 May 21;372(6544):864-868
pubmed: 34016782
Science. 2017 Jun 16;356(6343):1172-1175
pubmed: 28596307
Plant Cell. 2019 Apr;31(4):832-847
pubmed: 30837295
Plant Cell Physiol. 2010 Mar;51(3):341-53
pubmed: 20097910
Nat Commun. 2022 Jan 25;13(1):477
pubmed: 35078978
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
New Phytol. 2021 Aug;231(3):963-973
pubmed: 33909309
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9239-E9246
pubmed: 30209216
Curr Opin Plant Biol. 2018 Aug;44:137-144
pubmed: 29729528
Science. 2017 Jun 16;356(6343):1175-1178
pubmed: 28596311
Nature. 2011 Jan 6;469(7328):58-63
pubmed: 21209659
Epigenetics. 2011 Feb;6(2):141-6
pubmed: 20935498
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E5025-34
pubmed: 24297892
Mol Plant. 2010 May;3(3):563-75
pubmed: 20035035
BMC Plant Biol. 2009 Jan 22;9:10
pubmed: 19161626
Appl Environ Microbiol. 1998 Dec;64(12):5004-7
pubmed: 9835596
Cell Res. 2014 Jan;24(1):130-3
pubmed: 24343576
Nat Protoc. 2008;3(6):1018-25
pubmed: 18536649
New Phytol. 2017 Jun;214(4):1631-1645
pubmed: 28380681
Curr Biol. 2016 Apr 25;26(8):987-98
pubmed: 27020747
Nat Rev Microbiol. 2020 Nov;18(11):649-660
pubmed: 32694620
Plant Cell. 2010 Sep;22(9):3066-75
pubmed: 20870961
J Exp Bot. 2021 Jan 20;72(1):92-106
pubmed: 32459300
Plant Methods. 2005 Dec 18;1:13
pubmed: 16359558
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5
pubmed: 17242358
Curr Biol. 2017 Apr 24;27(8):1206-1212
pubmed: 28392110
Curr Biol. 2012 Dec 4;22(23):2236-41
pubmed: 23122845
Elife. 2017 Jul 20;6:
pubmed: 28726631
Plant Biotechnol J. 2021 Jun;19(6):1170-1182
pubmed: 33382517
Nat Rev Microbiol. 2008 Oct;6(10):763-75
pubmed: 18794914
Mol Plant. 2018 Nov 5;11(11):1344-1359
pubmed: 30292683
New Phytol. 2013 Aug;199(3):639-49
pubmed: 24010138
Plant Biotechnol J. 2019 Jul;17(7):1369-1379
pubmed: 30575262
Mol Plant Microbe Interact. 2001 Jun;14(6):695-700
pubmed: 11386364
Plant Cell Physiol. 2007 Dec;48(12):1790-802
pubmed: 17989085
Science. 2011 Aug 12;333(6044):880-2
pubmed: 21836016
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25779-25788
pubmed: 32999061
Plant J. 2009 Nov;60(3):476-87
pubmed: 19594710
Nat Commun. 2016 Sep 02;7:12636
pubmed: 27586842
Plant J. 2013 Dec;76(5):811-24
pubmed: 24112720
Nat Microbiol. 2019 Oct;4(10):1654-1660
pubmed: 31235957
Plant Cell. 2012 Oct;24(10):4236-51
pubmed: 23073651
Plant Cell. 2005 Aug;17(8):2384-96
pubmed: 15994908
Plant Cell. 2012 Dec;24(12):5007-23
pubmed: 23243127
Front Genet. 2018 Nov 30;9:590
pubmed: 30555515
Plant Cell. 2001 Aug;13(8):1959-68
pubmed: 11487705
Trends Plant Sci. 2022 Apr;27(4):319-321
pubmed: 34953721
Plant Cell. 2022 Mar 29;34(4):1250-1272
pubmed: 35099538
J Chem Ecol. 2012 Jun;38(6):651-64
pubmed: 22623151
Plant Cell. 2021 Nov 4;33(11):3470-3486
pubmed: 34469578
Science. 2020 Apr 17;368(6488):270-274
pubmed: 32299947
Plant Physiol. 2005 Sep;139(1):5-17
pubmed: 16166256
Plant Cell. 2010 May;22(5):1483-97
pubmed: 20453115
Mol Plant. 2022 Feb 7;15(2):225-227
pubmed: 34968731
J Exp Bot. 2017 Jul 20;68(16):4627-4634
pubmed: 28981783

Auteurs

Qiang Zhang (Q)

School of Life Sciences, East China Normal University, 200241, Shanghai, China.

Shuangshuang Wang (S)

School of Life Sciences, East China Normal University, 200241, Shanghai, China.

Qiujin Xie (Q)

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.

Yuanjun Xia (Y)

School of Life Sciences, East China Normal University, 200241, Shanghai, China.

Lei Lu (L)

School of Life Sciences, East China Normal University, 200241, Shanghai, China.

Mingxing Wang (M)

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.

Gang Wang (G)

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.

Siyu Long (S)

School of Life Sciences, East China Normal University, 200241, Shanghai, China.

Yunfei Cai (Y)

School of Life Sciences, East China Normal University, 200241, Shanghai, China.

Ling Xu (L)

School of Life Sciences, East China Normal University, 200241, Shanghai, China.

Ertao Wang (E)

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China. etwang@cemps.ac.cn.

Yina Jiang (Y)

School of Life Sciences, East China Normal University, 200241, Shanghai, China. ynjiang@bio.ecnu.edu.cn.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Animals Humans Mice Neoplasms Tumor Microenvironment

Mutational analysis of Phanerochaete chrysosporium´s purine transporter.

Mariana Barraco-Vega, Manuel Sanguinetti, Gabriela da Rosa et al.
1.00
Phanerochaete Fungal Proteins Purines Aspergillus nidulans DNA Mutational Analysis

Classifications MeSH