Food Allergens of Plant and Animal Origin: Classification, Characteristics, and Properties.
Allergens classification
Allergens families
Food allergen
Food allergen properties
Food allergy
Plant allergens
Prevalence
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
25
9
2023
pubmed:
22
9
2023
entrez:
22
9
2023
Statut:
ppublish
Résumé
Food allergy is an adverse immune response to specific foods that can be either IgE-mediated or non-IgE mediated. The causes of IgE-mediated food allergy are multifactorial and involve genetic, dietary, and environmental factors. The prevalence of food allergy has increased over the last few decades, especially in urbanized, industrialized, and Westernized countries, and the epithelial barrier hypothesis has been recently suggested as a possible explanation for this increase. Food allergens of plant and animal origin are classified into a few families and superfamilies that are widely distributed and conserved. While it is known that food allergens share common properties, such as stability to enzymes and solubility, they also exhibit differential properties, and exceptions to the common characteristics exist. In recent years, novel characteristics of food allergens have been proposed based on their immunological properties and their ability to act as adjuvants or enhancers of the immune system.This chapter provides an overview of the current knowledge of food allergy, covering their prevalence, classification of food allergens from plant and animal origins, and recent advancements in the characterization of the properties of these allergens.
Identifiants
pubmed: 37737974
doi: 10.1007/978-1-0716-3453-0_1
doi:
Substances chimiques
Adjuvants, Immunologic
0
Adjuvants, Pharmaceutic
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-14Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Boyce JA, Assa’ad A, Burks AW et al (2010) Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 126(6 Suppl):S1–S58. https://doi.org/10.1016/j.jaci.2010.10.007
doi: 10.1016/j.jaci.2010.10.007
pubmed: 21134576
pmcid: 4241964
Sampath V, Abrams EM, Adlou B et al (2021) Food allergy across the globe. J Allergy Clin Immunol 148(6):1347–1364. https://doi.org/10.1016/j.jaci.2021.10.018
doi: 10.1016/j.jaci.2021.10.018
pubmed: 34872649
Halken S, Muraro A, de Silva D et al (2021) EAACI guideline: preventing the development of food allergy in infants and young children (2020 update). Pediatr Allergy Immunol 32(5):843–858. https://doi.org/10.1111/pai.13496
doi: 10.1111/pai.13496
pubmed: 33710678
Akdis CA (2021) Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 21(11):739–751. https://doi.org/10.1038/s41577-021-00538-7
doi: 10.1038/s41577-021-00538-7
pubmed: 33846604
Sicherer SH, Sampson HA (2018) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 141(1):41–58. https://doi.org/10.1016/j.jaci.2017.11.003
doi: 10.1016/j.jaci.2017.11.003
pubmed: 29157945
Chafen JJ, Newberry SJ, Riedl MA et al (2010) Diagnosing and managing common food allergies: a systematic review. JAMA 303(18):1848–1856. https://doi.org/10.1001/jama.2010.582
doi: 10.1001/jama.2010.582
pubmed: 20460624
Okubo Y, Nochioka K, Testa MA (2019) Nationwide survey of hospitalization due to pediatric food-induced anaphylaxis in the United States. Pediatr Emerg Care 35(11):769–773. https://doi.org/10.1097/PEC.0000000000001543
doi: 10.1097/PEC.0000000000001543
pubmed: 30113437
Botha M, Basera W, Facey-Thomas HE et al (2019) Rural and urban food allergy prevalence from the South African Food Allergy (SAFFA) study. J Allergy Clin Immunol 143(2):662–668. https://doi.org/10.1016/j.jaci.2018.07.023
doi: 10.1016/j.jaci.2018.07.023
pubmed: 30096388
Prescott SL, Pawankar R, Allen KJ et al (2013) A global survey of changing patterns of food allergy burden in children. World Allergy Organ J 6(1):21. https://doi.org/10.1186/1939-4551-6-21
doi: 10.1186/1939-4551-6-21
pubmed: 24304599
pmcid: 3879010
Hilvo M (2021) Maternal elimination diet and symptoms of cow’s milk allergy in breastfed infants. JAMA Pediatr 175(4):425–426. https://doi.org/10.1001/jamapediatrics.2020.5311
doi: 10.1001/jamapediatrics.2020.5311
pubmed: 33427864
Nwaru BI, Hickstein L, Panesar SS et al (2014) Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy 69(8):992–1007. https://doi.org/10.1111/all.12423
doi: 10.1111/all.12423
pubmed: 24816523
Kummeling I, Mills ENC, Clausen M et al (2009) The EuroPrevall surveys on the prevalence of food allergies in children and adults: background and study methodology. Allergy 64(10):1493–1497. https://doi.org/10.1111/j.1398-9995.2009.02046.x
doi: 10.1111/j.1398-9995.2009.02046.x
pubmed: 19385958
Keil T, McBride D, Grimshaw K et al (2010) The multinational birth cohort of EuroPrevall: background, aims and methods. Allergy 65(4):482–490. https://doi.org/10.1111/j.1398-9995.2009.02171.x
doi: 10.1111/j.1398-9995.2009.02171.x
pubmed: 19793062
Sampson HA, Aceves S, Bock SA et al (2014) Food allergy: a practice parameter update-2014. J Allergy Clin Immunol 134(5):1016–1025. https://doi.org/10.1016/j.jaci.2014.05.013
doi: 10.1016/j.jaci.2014.05.013
pubmed: 25174862
Sudharson S, Kalic T, Hafner C, Breiteneder H (2021) Newly defined allergens in the WHO/IUIS allergen nomenclature database during 01/2019-03/2021. Allergy 76(11):3359–3373. https://doi.org/10.1111/all.15021
doi: 10.1111/all.15021
pubmed: 34310736
Teuber SS, Beyer K, Comstock S, Wallowitz M (2006) The big eight foods: clinical and epidemiological overview. In: Food allergy. ASM Press, pp 49–79
Gupta RS, Warren CM, Smith BM et al (2018) The public health impact of parent-reported childhood food allergies in the United States. Pediatrics 142(6):e20181235. https://doi.org/10.1542/peds.2018-1235
doi: 10.1542/peds.2018-1235
pubmed: 30455345
Gupta RS, Warren CM, Smith BM et al (2019) Prevalence and severity of food allergies among US adults. JAMA Netw Open 2(1):e185630. https://doi.org/10.1001/jamanetworkopen.2018.5630
doi: 10.1001/jamanetworkopen.2018.5630
pubmed: 30646188
pmcid: 6324316
Sicherer SH, Warren CM, Dant C et al (2020) Food allergy from infancy through adulthood. J Allergy Clin Immunol Pract 8(6):1854–1864. https://doi.org/10.1016/j.jaip.2020.02.010
doi: 10.1016/j.jaip.2020.02.010
pubmed: 32499034
pmcid: 7899184
Savage J, Sicherer S, Wood R (2016) The natural history of food allergy. J Allergy Clin Immunol Pract 4(2):196–203; quiz 204. https://doi.org/10.1016/j.jaip.2015.11.024
doi: 10.1016/j.jaip.2015.11.024
pubmed: 26968958
Lack G (2008) Epidemiologic risks for food allergy. J Allergy Clin Immunol 121(6):1331–1336. https://doi.org/10.1016/j.jaci.2008.04.032
doi: 10.1016/j.jaci.2008.04.032
pubmed: 18539191
Matsuo H, Yokooji T, Taogoshi T (2015) Common food allergens and their IgE-binding epitopes. Allergol Int 64(4):332–343. https://doi.org/10.1016/j.alit.2015.06.009
doi: 10.1016/j.alit.2015.06.009
pubmed: 26433529
Soh JY, Huang CH, Lee BW (2015) Carbohydrates as food allergens. Asia Pac Allergy 5(1):17–24. https://doi.org/10.5415/apallergy.2015.5.1.17
doi: 10.5415/apallergy.2015.5.1.17
pubmed: 25653916
pmcid: 4313756
Shreffler WG, Castro RR, Kucuk ZY et al (2006) The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol 177(6):3677–3685. https://doi.org/10.4049/jimmunol.177.6.3677
doi: 10.4049/jimmunol.177.6.3677
pubmed: 16951327
Krause M, Crauwels P, Blanco-Pérez F et al (2021) Human monocyte-derived type 1 and 2 macrophages recognize Ara h 1, a major peanut allergen, by different mechanisms. Sci Rep 11(1):10141. https://doi.org/10.1038/s41598-021-89402-1
doi: 10.1038/s41598-021-89402-1
pubmed: 33980880
pmcid: 8115286
Hilmenyuk T, Bellinghausen I, Heydenreich B et al (2010) Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 129(3):437–445. https://doi.org/10.1111/j.1365-2567.2009.03199.x
doi: 10.1111/j.1365-2567.2009.03199.x
pubmed: 19922418
pmcid: 2826688
Valdelvira R, Garcia-Medina G, Galleani C et al (2023) Ara h 1 but not Ara h 2 strongly adheres to oral epithelium and remains in the oral area upon peanut release. Allergy 78:2024. https://doi.org/10.1111/all.15677
doi: 10.1111/all.15677
pubmed: 36794969
Angelina A, Sirvent S, Palladino C et al (2016) The lipid interaction capacity of Sin a 2 and Ara h 1, major mustard and peanut allergens of the cupin superfamily, endorses allergenicity. Allergy 71(9):1284–1294. https://doi.org/10.1111/all.12887
doi: 10.1111/all.12887
pubmed: 26991432
Jappe U, Schwager C, Schromm AB et al (2019) Lipophilic allergens, different modes of allergen-lipid interaction and their impact on asthma and allergy. Front Immunol 10:122. https://doi.org/10.3389/fimmu.2019.00122
doi: 10.3389/fimmu.2019.00122
pubmed: 30837983
pmcid: 6382701
Ozias-Akins P, Breiteneder H (2019) The functional biology of peanut allergens and possible links to their allergenicity. Allergy 74(5):888–898. https://doi.org/10.1111/all.13719
doi: 10.1111/all.13719
pubmed: 30636003
Rocha AJ, Sousa BL, Girão MS et al (2018) Cloning of cDNA sequences encoding cowpea (Vigna unguiculata) vicilins: computational simulations suggest a binding mode of cowpea vicilins to chitin oligomers. Int J Biol Macromol 117:565–573. https://doi.org/10.1016/j.ijbiomac.2018.05.197
doi: 10.1016/j.ijbiomac.2018.05.197
pubmed: 29847781
Sales MP, Pimenta PP, Paes NS et al (2001) Vicilins (7S storage globulins) of cowpea (Vigna unguiculata) seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera: Bruchidae) larvae. Braz J Med Biol Res 34(1):27–34. https://doi.org/10.1590/s0100-879x2001000100003
doi: 10.1590/s0100-879x2001000100003
pubmed: 11151025
Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 113(5):821–830; quiz 831. https://doi.org/10.1016/j.jaci.2004.01.779
doi: 10.1016/j.jaci.2004.01.779
pubmed: 15131562
Monaci L, Pilolli R, De Angelis E et al (2020) Food allergens: classification, molecular properties, characterization, and detection in food sources. Adv Food Nutr Res 93:113–146. https://doi.org/10.1016/bs.afnr.2020.03.001
doi: 10.1016/bs.afnr.2020.03.001
pubmed: 32711861
Cabanillas B, Jappe U, Novak N (2018) Allergy to peanut, soybean, and other legumes: recent advances in allergen characterization, stability to processing and IgE cross-reactivity. Mol Nutr Food Res 62(1). https://doi.org/10.1002/mnfr.201700446
Arora R, Kumar A, Singh IK, Singh A (2020) Pathogenesis related proteins: a defensin for plants but an allergen for humans. Int J Biol Macromol 157:659–672. https://doi.org/10.1016/j.ijbiomac.2019.11.223
doi: 10.1016/j.ijbiomac.2019.11.223
pubmed: 31790737
Sinha M, Singh RP, Kushwaha GS et al (2014) Current overview of allergens of plant pathogenesis related protein families. ScientificWorldJournal 2014:1. https://doi.org/10.1155/2014/543195
doi: 10.1155/2014/543195
Sankian M, Hajavi J, Moghadam M, Varasteh AR (2014) Identification and molecular characterization of the cDNA encoding Cucumis melo allergen, Cuc m 3, a plant pathogenesis-related protein. Rep Biochem Mol Biol 2(2):82–87
pubmed: 26989726
pmcid: 4757051
Asensio T, Crespo JF, Sanchez-Monge R et al (2004) Novel plant pathogenesis-related protein family involved in food allergy. J Allergy Clin Immunol 114(4):896–899. https://doi.org/10.1016/j.jaci.2004.06.014
doi: 10.1016/j.jaci.2004.06.014
pubmed: 15480331
Barre A, Culerrier R, Granier C et al (2009) Mapping of IgE-binding epitopes on the major latex allergen Hev b 2 and the cross-reacting 1,3beta-glucanase fruit allergens as a molecular basis for the latex-fruit syndrome. Mol Immunol 46(8–9):1595–1604. https://doi.org/10.1016/j.molimm.2008.12.007
doi: 10.1016/j.molimm.2008.12.007
pubmed: 19185347
Wagner S, Breiteneder H (2002) The latex-fruit syndrome. Biochem Soc Trans 30(Pt 6):935–940. https://doi.org/10.1042/bst0300935
doi: 10.1042/bst0300935
pubmed: 12440950
Blanco C, Carrillo T, Castillo R et al (1994) Latex allergy: clinical features and cross-reactivity with fruits. Ann Allergy 73(4):309–314
pubmed: 7943998
Palacín A, Tordesillas L, Gamboa P et al (2010) Characterization of peach thaumatin-like proteins and their identification as major peach allergens. Clin Exp Allergy 40(9):1422–1430. https://doi.org/10.1111/j.1365-2222.2010.03578.x
doi: 10.1111/j.1365-2222.2010.03578.x
pubmed: 20701616
Manavski N, Peters U, Brettschneider R et al (2012) Cof a 1: identification, expression and immunoreactivity of the first coffee allergen. Int Arch Allergy Immunol 159(3):235–242. https://doi.org/10.1159/000337461
doi: 10.1159/000337461
pubmed: 22722540
Klinglmayr E, Hauser M, Zimmermann F et al (2009) Identification of B-cell epitopes of Bet v 1 involved in cross-reactivity with food allergens. Allergy 64(4):647–651. https://doi.org/10.1111/j.1398-9995.2008.01844.x
doi: 10.1111/j.1398-9995.2008.01844.x
pubmed: 19154550
Vieths S, Scheurer S, Ballmer-Weber B (2002) Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci 964:47–68. https://doi.org/10.1111/j.1749-6632.2002.tb04132.x
doi: 10.1111/j.1749-6632.2002.tb04132.x
pubmed: 12023194
Santos A, Van Ree R (2011) Profilins: mimickers of allergy or relevant allergens? Int Arch Allergy Immunol 155(3):191–204. https://doi.org/10.1159/000321178
doi: 10.1159/000321178
pubmed: 21293140
Schwager C, Kull S, Krause S et al (2015) Development of a novel strategy to isolate lipophilic allergens (oleosins) from peanuts. PLoS One 10(4):e0123419. https://doi.org/10.1371/journal.pone.0123419
doi: 10.1371/journal.pone.0123419
pubmed: 25860789
pmcid: 4393030
Schwager C, Kull S, Behrends J et al (2017) Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J Allergy Clin Immunol 140(5):1331–1338. https://doi.org/10.1016/j.jaci.2017.02.020
doi: 10.1016/j.jaci.2017.02.020
pubmed: 28342912
Petersen A, Kull S, Rennert S et al (2015) Peanut defensins: novel allergens isolated from lipophilic peanut extract. J Allergy Clin Immunol 136(5):1295–1301. https://doi.org/10.1016/j.jaci.2015.04.010
doi: 10.1016/j.jaci.2015.04.010
pubmed: 26037551
Nowak-Węgrzyn A, Burks AW, Sampson HA (2020) Reactions to foods. In: Burks AW (ed) Middleton’s allergy: principles and practice. Elsevier
Wal JM (2004) Bovine milk allergenicity. Ann Allergy Asthma Immunol 93(5 Suppl 3):S2–S11. https://doi.org/10.1016/s1081-1206(10)61726-7
doi: 10.1016/s1081-1206(10)61726-7
pubmed: 15562868
Villa C, Costa J, Oliveira MBPP, Mafra I (2018) Bovine milk allergens: a comprehensive review. Compr Rev Food Sci Food Saf 17(1):137–164. https://doi.org/10.1111/1541-4337.12318
doi: 10.1111/1541-4337.12318
pubmed: 33350061
Restani P, Velonà T, Plebani A et al (1995) Evaluation by SDS-PAGE and immunoblotting of residual antigenicity in hydrolysed protein formulas. Clin Exp Allergy 25(7):651–658. https://doi.org/10.1111/j.1365-2222.1995.tb01113.x
doi: 10.1111/j.1365-2222.1995.tb01113.x
pubmed: 8521184
Docena GH, Fernandez R, Chirdo FG, Fossati CA (1996) Identification of casein as the major allergenic and antigenic protein of cow’s milk. Allergy 51(6):412–416. https://doi.org/10.1111/j.1398-9995.1996.tb04639.x
doi: 10.1111/j.1398-9995.1996.tb04639.x
pubmed: 8837665
Dupont C (2014) Diagnosis of cow’s milk allergy in children: determining the gold standard? Expert Rev Clin Immunol 10(2):257–267. https://doi.org/10.1586/1744666x.2014.874946
doi: 10.1586/1744666x.2014.874946
pubmed: 24410539
Spuergin P, Walter M, Schiltz E et al (1997) Allergenicity of alpha-caseins from cow, sheep, and goat. Allergy 52(3):293–298. https://doi.org/10.1111/j.1398-9995.1997.tb00993.x
doi: 10.1111/j.1398-9995.1997.tb00993.x
pubmed: 9140519
Hoffman DR (1983) Immunochemical identification of the allergens in egg white. J Allergy Clin Immunol 71(5):481–486. https://doi.org/10.1016/0091-6749(83)90465-7
doi: 10.1016/0091-6749(83)90465-7
pubmed: 6601671
Urisu A, Ando H, Morita Y et al (1997) Allergenic activity of heated and ovomucoid-depleted egg white. J Allergy Clin Immunol 100(2):171–176. https://doi.org/10.1016/s0091-6749(97)70220-3
doi: 10.1016/s0091-6749(97)70220-3
pubmed: 9275136
Des Roches A, Nguyen M, Paradis L et al (2006) Tolerance to cooked egg in an egg allergic population. Allergy 61(7):900–901. https://doi.org/10.1111/j.1398-9995.2006.01134.x
doi: 10.1111/j.1398-9995.2006.01134.x
pubmed: 16792596
Cooke SK, Sampson HA (1997) Allergenic properties of ovomucoid in man. J Immunol 159(4):2026–2032
doi: 10.4049/jimmunol.159.4.2026
pubmed: 9257870
Järvinen KM, Beyer K, Vila L et al (2007) Specificity of IgE antibodies to sequential epitopes of hen’s egg ovomucoid as a marker for persistence of egg allergy. Allergy 62(7):758–765. https://doi.org/10.1111/j.1398-9995.2007.01332.x
doi: 10.1111/j.1398-9995.2007.01332.x
pubmed: 17573723
Ayuso R, Lehrer SB, Reese G (2002) Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol 127(1):27–37. https://doi.org/10.1159/000048166
doi: 10.1159/000048166
pubmed: 11893851
Reese G, Ayuso R, Lehrer SB (1999) Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol 119(4):247–258. https://doi.org/10.1159/000024201
doi: 10.1159/000024201
pubmed: 10474029
Lopata AL, O’Hehir RE, Lehrer SB (2010) Shellfish allergy. Clin Exp Allergy 40(6):850–858. https://doi.org/10.1111/j.1365-2222.2010.03513.x
doi: 10.1111/j.1365-2222.2010.03513.x
pubmed: 20412131
Lehrer SB, McCants ML, Salvaggio JE (1985) Identification of crustacea allergens by crossed radioimmunoelectrophoresis. Int Arch Allergy Appl Immunol 77(1–2):192–194. https://doi.org/10.1159/000233783
doi: 10.1159/000233783
pubmed: 4008073
Bugajska-Schretter A, Grote M, Vangelista L et al (2000) Purification, biochemical, and immunological characterisation of a major food allergen: different immunoglobulin E recognition of the apo- and calcium-bound forms of carp parvalbumin. Gut 46(5):661–669. https://doi.org/10.1136/gut.46.5.661
doi: 10.1136/gut.46.5.661
pubmed: 10764710
Van Do T, Hordvik I, Endresen C, Elsayed S (2005) Characterization of parvalbumin, the major allergen in Alaska pollack, and comparison with codfish Allergen M. Mol Immunol 42(3):345–353. https://doi.org/10.1016/j.molimm.2004.09.001
doi: 10.1016/j.molimm.2004.09.001
pubmed: 15589323
Lopata AL, Lehrer SB (2009) New insights into seafood allergy. Curr Opin Allergy Clin Immunol 9(3):270–277. https://doi.org/10.1097/ACI.0b013e32832b3e6f
doi: 10.1097/ACI.0b013e32832b3e6f
pubmed: 19398906
Pascual C, Martín Esteban M, Crespo JF (1992) Fish allergy: evaluation of the importance of cross-reactivity. J Pediatr 121(5 Pt 2):S29–S34. https://doi.org/10.1016/s0022-3476(05)81403-9
doi: 10.1016/s0022-3476(05)81403-9
pubmed: 1447631
Kelso JM, Jones RT, Yunginger JW (1996) Monospecific allergy to swordfish. Ann Allergy Asthma Immunol 77(3):227–228. https://doi.org/10.1016/S1081-1206(10)63260-7
doi: 10.1016/S1081-1206(10)63260-7
pubmed: 8814049
Tomm JM, van Do T, Jende C et al (2013) Identification of new potential allergens from Nile perch (Lates niloticus) and cod (Gadus morhua). J Investig Allergol Clin Immunol 23(3):159–167
pubmed: 23967754
Griesmeier U, Vázquez-Cortés S, Bublin M et al (2010) Expression levels of parvalbumins determine allergenicity of fish species. Allergy 65(2):191–198. https://doi.org/10.1111/j.1398-9995.2009.02162.x
doi: 10.1111/j.1398-9995.2009.02162.x
pubmed: 19796207