Quality assessment of automatically planned O-Ring linac SBRT plans for pelvic lymph node metastases, finding the optimal minimum target size by comparison with robotic SBRT.
CyberKnife
Halcyon
O-Ring linac
VMAT
pelvic SBRT
robotic SBRT
Journal
Journal of applied clinical medical physics
ISSN: 1526-9914
Titre abrégé: J Appl Clin Med Phys
Pays: United States
ID NLM: 101089176
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
18
08
2023
received:
20
02
2023
accepted:
21
08
2023
medline:
4
12
2023
pubmed:
22
9
2023
entrez:
22
9
2023
Statut:
ppublish
Résumé
The purpose of this study is to assess the quality of automatic planned O-Ring Halcyon linac SBRT plans for pelvic lymph node metastases and to establish an absolute PTV volume threshold as a plan quality prediction criterion. Compliance of the plans to institutional SBRT plan evaluation criteria and differences in plan quality and treatment delivery times between Halcyon Linac and CyberKnife robotic SBRT were evaluated. Twenty-one CyberKnife treatment plans were replanned for Halcyon. Prescription doses range was 26-40 Gy in mean three fractions. The mean/median planning target volume was 4.0/3.6 cm Seventy-one percent (n = 15)/95% (n = 20) of Halcyon and 81% (n = 17)/100% (n = 21) of CK plans fulfilled all ideal/tolerance criteria. For PTVs above a found optimal threshold of 2.6 cm All but one automatically optimized Halcyon treatment plans demonstrated ideal or acceptable performance. PTV threshold of 2.6 cm
Identifiants
pubmed: 37738649
doi: 10.1002/acm2.14143
pmc: PMC10691630
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14143Informations de copyright
© 2023 The Authors. Journal of Applied Clinical Medical Physics is published by Wiley Periodicals, Inc. on behalf of The American Association of Physicists in Medicine.
Références
J Thorac Oncol. 2010 Sep;5(9):1315-6
pubmed: 20736804
Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):123-35
pubmed: 2032883
Radiat Res Suppl. 1985;8:S13-9
pubmed: 3867079
Int J Radiat Oncol Biol Phys. 2022 Jan 1;112(1):4-21
pubmed: 34919882
Sci Rep. 2016 Nov 29;6:37987
pubmed: 27897235
Radiat Oncol. 2008 Jan 11;3:3
pubmed: 18190681
Strahlenther Onkol. 2019 Mar;195(3):193-198
pubmed: 30649567
Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1059-65
pubmed: 17241755
Cancers (Basel). 2022 Sep 08;14(18):
pubmed: 36139545
J Neurosurg. 2000 Dec;93 Suppl 3:219-22
pubmed: 11143252
J Appl Clin Med Phys. 2023 Dec;24(12):e14143
pubmed: 37738649
Int J Gynecol Cancer. 2022 Mar;32(3):372-379
pubmed: 35256426
Cancer. 2011 Oct 1;117(19):4566-72
pubmed: 21412761
Radiat Oncol. 2012 Aug 01;7:126
pubmed: 22852764
Int J Radiat Oncol Biol Phys. 2021 May 1;110(1):1-10
pubmed: 33864823
J Hematol Oncol. 2010 Jun 09;3:22
pubmed: 20534128
J Appl Clin Med Phys. 2021 Jan;22(1):261-270
pubmed: 33342070
Technol Cancer Res Treat. 2016 Oct;15(5):661-73
pubmed: 26208835
J Appl Clin Med Phys. 2021 Jan;22(1):68-75
pubmed: 33340388
J Appl Clin Med Phys. 2022 Jan;23(1):e13458
pubmed: 34845817
Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):109-22
pubmed: 2032882
J Appl Clin Med Phys. 2021 Jun;22(6):162-171
pubmed: 34032367
Int J Radiat Biol. 1992 Aug;62(2):249-62
pubmed: 1355519
Cureus. 2020 Nov 23;12(11):e11660
pubmed: 33391899
Rep Pract Oncol Radiother. 2015 Nov-Dec;20(6):472-83
pubmed: 26696788
Med Phys. 2010 Aug;37(8):4078-101
pubmed: 20879569
Radiat Oncol J. 2015 Sep;33(3):233-41
pubmed: 26484307
Int J Radiat Oncol Biol Phys. 2010 Nov 15;78(4):1253-60
pubmed: 20598811
Adv Radiat Oncol. 2020 Jan 28;5(3):482-489
pubmed: 32529144