mRNA in situ hybridization exhibits unbalanced nuclear/cytoplasmic dystrophin transcript repartition in Duchenne myogenic cells and skeletal muscle biopsies.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 09 2023
24 09 2023
Historique:
received:
04
05
2023
accepted:
20
09
2023
medline:
26
9
2023
pubmed:
25
9
2023
entrez:
24
9
2023
Statut:
epublish
Résumé
To gain insight on dystrophin (DMD) gene transcription dynamics and spatial localization, we assayed the DMD mRNA amount and defined its compartmentalization in myoblasts, myotubes, and skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients. Using droplet digital PCR, Real-time PCR, and RNAscope in situ hybridization, we showed that the DMD transcript amount is extremely reduced in both DMD patients' cells and muscle biopsies and that mutation-related differences occur. We also found that, compared to controls, DMD transcript is dramatically reduced in the cytoplasm, as up to 90% of it is localized in nuclei, preferentially at the perinuclear region. Using RNA/protein colocalization experiments, we showed that about 40% of nuclear DMD mRNA is localized in the nucleoli in both control and DMD myogenic cells. Our results clearly show that mutant DMD mRNA quantity is strongly reduced in the patients' myogenic cells and muscle biopsies. Furthermore, mutant DMD mRNA compartmentalization is spatially unbalanced due to a shift in its localization towards the nuclei. This abnormal transcript repartition contributes to the poor abundance and availability of the dystrophin messenger in cytoplasm. This novel finding also has important repercussions for RNA-targeted therapies.
Identifiants
pubmed: 37743371
doi: 10.1038/s41598-023-43134-6
pii: 10.1038/s41598-023-43134-6
pmc: PMC10518324
doi:
Substances chimiques
RNA, Messenger
0
Dystrophin
0
RNA
63231-63-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15942Informations de copyright
© 2023. Springer Nature Limited.
Références
Neri, M. et al. The genetic landscape of dystrophin mutations in Italy: a nationwide study. Front. Genet. 11, 131 (2020).
doi: 10.3389/fgene.2020.00131
pubmed: 32194622
pmcid: 7063120
Fortunato, F., Rossi, R., Falzarano, M. S. & Ferlini, A. Innovative therapeutic approaches for Duchenne muscular dystrophy. J. Clin. Med. 10(4), 820 (2021).
doi: 10.3390/jcm10040820
pubmed: 33671409
pmcid: 7922390
Fortunato, F., Farnè, M. & Ferlini, A. The DMD gene and therapeutic approaches to restore dystrophin. Neuromuscul. Disord. 31(10), 1013–1020 (2021).
doi: 10.1016/j.nmd.2021.08.004
pubmed: 34736624
Manini, A., Abati, E., Nuredini, A., Corti, S. & Comi, G. P. Adeno-associated virus (AAV)-mediated gene therapy for Duchenne muscular dystrophy: the issue of transgene persistence. Front. Neurol. 12, 814174 (2022).
doi: 10.3389/fneur.2021.814174
pubmed: 35095747
pmcid: 8797140
Gazzoli, I. et al. Non-sequential and multi-step splicing of the dystrophin transcript. RNA biol. 13(3), 290–305 (2016).
doi: 10.1080/15476286.2015.1125074
pubmed: 26670121
Muntoni, F., Torelli, S. & Ferlini, A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2(12), 731–740 (2003).
doi: 10.1016/S1474-4422(03)00585-4
pubmed: 14636778
Doorenweerd, N. et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci. Rep. 7(1), 12575 (2017).
doi: 10.1038/s41598-017-12981-5
pubmed: 28974727
pmcid: 5626779
Doorenweerd, N. Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy—A narrative review. Neuromuscul. Disord. 30(6), 437–442 (2020).
doi: 10.1016/j.nmd.2020.05.001
pubmed: 32522501
Hildyard, J., Rawson, F., Wells, D. J. & Piercy, R. J. Multiplex in situ hybridization within a single transcript: RNAscope reveals dystrophin mRNA dynamics. PLoS ONE 15(9), e0239467 (2020).
doi: 10.1371/journal.pone.0239467
pubmed: 32970731
pmcid: 7514052
Hildyard, J. et al. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res. 5, 76 (2020).
doi: 10.12688/wellcomeopenres.15762.1
pubmed: 32724863
pmcid: 7372313
García-Rodríguez, R. et al. Premature termination codons in the DMD gene cause reduced local mRNA synthesis. Proc. Natl. Acad. Sci. USA 117(28), 16456–16464 (2020).
doi: 10.1073/pnas.1910456117
pubmed: 32616572
pmcid: 7368324
Crawford, A. H. et al. Validation of DE50-MD dogs as a model for the brain phenotype of Duchenne muscular dystrophy. Dis, Model Mech. 15(3), dmm049291 (2022).
doi: 10.1242/dmm.049291
pubmed: 35019137
Basyuk, E., Rage, F. & Bertrand, E. RNA transport from transcription to localized translation: a single molecule perspective. RNA Biol. 18(9), 1221–1237 (2021).
doi: 10.1080/15476286.2020.1842631
pubmed: 33111627
Denes, L. T., Kelley, C. P. & Wang, E. T. Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat. Commun. 12(1), 6079 (2021).
doi: 10.1038/s41467-021-26383-9
pubmed: 34707124
pmcid: 8551216
Iyer, S. R. et al. Altered nuclear dynamics in MDX myofibers. J. Appl. Physiol. 122(3), 470–481 (2017).
doi: 10.1152/japplphysiol.00857.2016
pubmed: 27979987
Tauber, D., Tauber, G. & Parker, R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45(9), 764–778 (2020).
doi: 10.1016/j.tibs.2020.05.002
pubmed: 32475683
pmcid: 7211619
Tadayoni, R., Rendon, A., Soria-Jasso, L. E. & Cisneros, B. Dystrophin Dp71: the smallest but multifunctional product of the Duchenne muscular dystrophy gene. Mol. Neurobiol. 45(1), 43–60 (2012).
doi: 10.1007/s12035-011-8218-9
pubmed: 22105192
Chesshyre, M. et al. Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy. J. Cachexia Sarcopenia Muscle 13(2), 1360–1372 (2022).
doi: 10.1002/jcsm.12914
pubmed: 35083887
pmcid: 8977977
Kawaguchi, T. et al. Detection of dystrophin Dp71 in human skeletal muscle using an automated capillary western assay system. Int. J. Mol. Sci. 19(6), 1546 (2018).
doi: 10.3390/ijms19061546
pubmed: 29789502
pmcid: 6032138
Paul, B. & Montpetit, B. Altered RNA processing and export lead to retention of mRNAs near transcription sites and nuclear pore complexes or within the nucleolus. Mol. Biol. Cell. 27(17), 2742–2756 (2016).
doi: 10.1091/mbc.e16-04-0244
pubmed: 27385342
pmcid: 5007094
Kim, S. H. et al. Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell 21(7), 2045–2057 (2009).
doi: 10.1105/tpc.109.067736
pubmed: 19602621
pmcid: 2729600
Haslett, J. N. et al. Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc. Natl. Acad. Sci. USA 99(23), 15000–15005 (2002).
doi: 10.1073/pnas.192571199
pubmed: 12415109
pmcid: 137534
Gherardi, S. et al. Transcriptional and epigenetic analyses of the DMD locus reveal novel cis-acting DNA elements that govern muscle dystrophin expression. Biochim. Biophys. Acta Gene Regul. Mech. 1860(11), 1138–1147 (2017).
doi: 10.1016/j.bbagrm.2017.08.010
pubmed: 28867298
Lim, K. R. Q. et al. Natural history of a mouse model overexpressing the Dp71 Dystrophin Isoform. Int. J. Mol. Sci. 22(23), 12617 (2021).
doi: 10.3390/ijms222312617
pubmed: 34884423
pmcid: 8657860
Newlands, S. et al. Transcription occurs in pulses in muscle fibers. Genes Dev. 12(17), 2748–2758 (1998).
doi: 10.1101/gad.12.17.2748
pubmed: 9732272
pmcid: 317123
Reyes-Gutierrez, P., Ritland Politz, J. C. & Pederson, T. A mRNA and cognate microRNAs localize in the nucleolus. Nucleus 5(6), 636–642 (2014).
doi: 10.4161/19491034.2014.990864
pubmed: 25485975
pmcid: 4615376
Falzarano, M. S. et al. Duchenne muscular dystrophy myogenic cells from urine-derived stem cells recapitulate the dystrophin genotype and phenotype. Hum. Gene Ther. 27(10), 772–783 (2016).
doi: 10.1089/hum.2016.079
pubmed: 27530229
Frontini, F. et al. Circulating microRNA-197-3p as a potential biomarker for asbestos exposure. Sci. Rep. 11(1), 23955 (2021).
doi: 10.1038/s41598-021-03189-9
pubmed: 34907223
pmcid: 8671556
Abdelmohsen, K. et al. Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs. Nucleic Acids Res. 39(19), 8513–8530 (2011).
doi: 10.1093/nar/gkr488
pubmed: 21737422
pmcid: 3201861