mRNA in situ hybridization exhibits unbalanced nuclear/cytoplasmic dystrophin transcript repartition in Duchenne myogenic cells and skeletal muscle biopsies.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 09 2023
Historique:
received: 04 05 2023
accepted: 20 09 2023
medline: 26 9 2023
pubmed: 25 9 2023
entrez: 24 9 2023
Statut: epublish

Résumé

To gain insight on dystrophin (DMD) gene transcription dynamics and spatial localization, we assayed the DMD mRNA amount and defined its compartmentalization in myoblasts, myotubes, and skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients. Using droplet digital PCR, Real-time PCR, and RNAscope in situ hybridization, we showed that the DMD transcript amount is extremely reduced in both DMD patients' cells and muscle biopsies and that mutation-related differences occur. We also found that, compared to controls, DMD transcript is dramatically reduced in the cytoplasm, as up to 90% of it is localized in nuclei, preferentially at the perinuclear region. Using RNA/protein colocalization experiments, we showed that about 40% of nuclear DMD mRNA is localized in the nucleoli in both control and DMD myogenic cells. Our results clearly show that mutant DMD mRNA quantity is strongly reduced in the patients' myogenic cells and muscle biopsies. Furthermore, mutant DMD mRNA compartmentalization is spatially unbalanced due to a shift in its localization towards the nuclei. This abnormal transcript repartition contributes to the poor abundance and availability of the dystrophin messenger in cytoplasm. This novel finding also has important repercussions for RNA-targeted therapies.

Identifiants

pubmed: 37743371
doi: 10.1038/s41598-023-43134-6
pii: 10.1038/s41598-023-43134-6
pmc: PMC10518324
doi:

Substances chimiques

RNA, Messenger 0
Dystrophin 0
RNA 63231-63-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

15942

Informations de copyright

© 2023. Springer Nature Limited.

Références

Neri, M. et al. The genetic landscape of dystrophin mutations in Italy: a nationwide study. Front. Genet. 11, 131 (2020).
doi: 10.3389/fgene.2020.00131 pubmed: 32194622 pmcid: 7063120
Fortunato, F., Rossi, R., Falzarano, M. S. & Ferlini, A. Innovative therapeutic approaches for Duchenne muscular dystrophy. J. Clin. Med. 10(4), 820 (2021).
doi: 10.3390/jcm10040820 pubmed: 33671409 pmcid: 7922390
Fortunato, F., Farnè, M. & Ferlini, A. The DMD gene and therapeutic approaches to restore dystrophin. Neuromuscul. Disord. 31(10), 1013–1020 (2021).
doi: 10.1016/j.nmd.2021.08.004 pubmed: 34736624
Manini, A., Abati, E., Nuredini, A., Corti, S. & Comi, G. P. Adeno-associated virus (AAV)-mediated gene therapy for Duchenne muscular dystrophy: the issue of transgene persistence. Front. Neurol. 12, 814174 (2022).
doi: 10.3389/fneur.2021.814174 pubmed: 35095747 pmcid: 8797140
Gazzoli, I. et al. Non-sequential and multi-step splicing of the dystrophin transcript. RNA biol. 13(3), 290–305 (2016).
doi: 10.1080/15476286.2015.1125074 pubmed: 26670121
Muntoni, F., Torelli, S. & Ferlini, A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2(12), 731–740 (2003).
doi: 10.1016/S1474-4422(03)00585-4 pubmed: 14636778
Doorenweerd, N. et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci. Rep. 7(1), 12575 (2017).
doi: 10.1038/s41598-017-12981-5 pubmed: 28974727 pmcid: 5626779
Doorenweerd, N. Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy—A narrative review. Neuromuscul. Disord. 30(6), 437–442 (2020).
doi: 10.1016/j.nmd.2020.05.001 pubmed: 32522501
Hildyard, J., Rawson, F., Wells, D. J. & Piercy, R. J. Multiplex in situ hybridization within a single transcript: RNAscope reveals dystrophin mRNA dynamics. PLoS ONE 15(9), e0239467 (2020).
doi: 10.1371/journal.pone.0239467 pubmed: 32970731 pmcid: 7514052
Hildyard, J. et al. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res. 5, 76 (2020).
doi: 10.12688/wellcomeopenres.15762.1 pubmed: 32724863 pmcid: 7372313
García-Rodríguez, R. et al. Premature termination codons in the DMD gene cause reduced local mRNA synthesis. Proc. Natl. Acad. Sci. USA 117(28), 16456–16464 (2020).
doi: 10.1073/pnas.1910456117 pubmed: 32616572 pmcid: 7368324
Crawford, A. H. et al. Validation of DE50-MD dogs as a model for the brain phenotype of Duchenne muscular dystrophy. Dis, Model Mech. 15(3), dmm049291 (2022).
doi: 10.1242/dmm.049291 pubmed: 35019137
Basyuk, E., Rage, F. & Bertrand, E. RNA transport from transcription to localized translation: a single molecule perspective. RNA Biol. 18(9), 1221–1237 (2021).
doi: 10.1080/15476286.2020.1842631 pubmed: 33111627
Denes, L. T., Kelley, C. P. & Wang, E. T. Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat. Commun. 12(1), 6079 (2021).
doi: 10.1038/s41467-021-26383-9 pubmed: 34707124 pmcid: 8551216
Iyer, S. R. et al. Altered nuclear dynamics in MDX myofibers. J. Appl. Physiol. 122(3), 470–481 (2017).
doi: 10.1152/japplphysiol.00857.2016 pubmed: 27979987
Tauber, D., Tauber, G. & Parker, R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45(9), 764–778 (2020).
doi: 10.1016/j.tibs.2020.05.002 pubmed: 32475683 pmcid: 7211619
Tadayoni, R., Rendon, A., Soria-Jasso, L. E. & Cisneros, B. Dystrophin Dp71: the smallest but multifunctional product of the Duchenne muscular dystrophy gene. Mol. Neurobiol. 45(1), 43–60 (2012).
doi: 10.1007/s12035-011-8218-9 pubmed: 22105192
Chesshyre, M. et al. Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy. J. Cachexia Sarcopenia Muscle 13(2), 1360–1372 (2022).
doi: 10.1002/jcsm.12914 pubmed: 35083887 pmcid: 8977977
Kawaguchi, T. et al. Detection of dystrophin Dp71 in human skeletal muscle using an automated capillary western assay system. Int. J. Mol. Sci. 19(6), 1546 (2018).
doi: 10.3390/ijms19061546 pubmed: 29789502 pmcid: 6032138
Paul, B. & Montpetit, B. Altered RNA processing and export lead to retention of mRNAs near transcription sites and nuclear pore complexes or within the nucleolus. Mol. Biol. Cell. 27(17), 2742–2756 (2016).
doi: 10.1091/mbc.e16-04-0244 pubmed: 27385342 pmcid: 5007094
Kim, S. H. et al. Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell 21(7), 2045–2057 (2009).
doi: 10.1105/tpc.109.067736 pubmed: 19602621 pmcid: 2729600
Haslett, J. N. et al. Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc. Natl. Acad. Sci. USA 99(23), 15000–15005 (2002).
doi: 10.1073/pnas.192571199 pubmed: 12415109 pmcid: 137534
Gherardi, S. et al. Transcriptional and epigenetic analyses of the DMD locus reveal novel cis-acting DNA elements that govern muscle dystrophin expression. Biochim. Biophys. Acta Gene Regul. Mech. 1860(11), 1138–1147 (2017).
doi: 10.1016/j.bbagrm.2017.08.010 pubmed: 28867298
Lim, K. R. Q. et al. Natural history of a mouse model overexpressing the Dp71 Dystrophin Isoform. Int. J. Mol. Sci. 22(23), 12617 (2021).
doi: 10.3390/ijms222312617 pubmed: 34884423 pmcid: 8657860
Newlands, S. et al. Transcription occurs in pulses in muscle fibers. Genes Dev. 12(17), 2748–2758 (1998).
doi: 10.1101/gad.12.17.2748 pubmed: 9732272 pmcid: 317123
Reyes-Gutierrez, P., Ritland Politz, J. C. & Pederson, T. A mRNA and cognate microRNAs localize in the nucleolus. Nucleus 5(6), 636–642 (2014).
doi: 10.4161/19491034.2014.990864 pubmed: 25485975 pmcid: 4615376
Falzarano, M. S. et al. Duchenne muscular dystrophy myogenic cells from urine-derived stem cells recapitulate the dystrophin genotype and phenotype. Hum. Gene Ther. 27(10), 772–783 (2016).
doi: 10.1089/hum.2016.079 pubmed: 27530229
Frontini, F. et al. Circulating microRNA-197-3p as a potential biomarker for asbestos exposure. Sci. Rep. 11(1), 23955 (2021).
doi: 10.1038/s41598-021-03189-9 pubmed: 34907223 pmcid: 8671556
Abdelmohsen, K. et al. Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs. Nucleic Acids Res. 39(19), 8513–8530 (2011).
doi: 10.1093/nar/gkr488 pubmed: 21737422 pmcid: 3201861

Auteurs

Maria Sofia Falzarano (MS)

Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy.

Martina Mietto (M)

Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy.

Fernanda Fortunato (F)

Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy.

Marianna Farnè (M)

Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy.

Fernanda Martini (F)

Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy.

Pierpaolo Ala (P)

Dubowitz Neuromuscular Centre and National Institute for Health Research, Great Ormond Street Institute of Child Health, Biomedical Research Centre, University College London, London, UK.

Rita Selvatici (R)

Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy.

Francesco Muntoni (F)

Dubowitz Neuromuscular Centre and National Institute for Health Research, Great Ormond Street Institute of Child Health, Biomedical Research Centre, University College London, London, UK.

Alessandra Ferlini (A)

Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy. fla@unife.it.
Dubowitz Neuromuscular Centre and National Institute for Health Research, Great Ormond Street Institute of Child Health, Biomedical Research Centre, University College London, London, UK. fla@unife.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH