Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic T
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
08
03
2023
accepted:
22
08
2023
medline:
23
10
2023
pubmed:
26
9
2023
entrez:
25
9
2023
Statut:
ppublish
Résumé
Aberrant CD4
Identifiants
pubmed: 37749331
doi: 10.1038/s41591-023-02556-5
pii: 10.1038/s41591-023-02556-5
pmc: PMC10579100
mid: EMS188949
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2602-2614Subventions
Organisme : European Research Council
ID : 101040023
Pays : International
Organisme : NIH HHS
ID : R01DK121977
Pays : United States
Organisme : NIH HHS
ID : R01AI163007
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
Schmitt, H., Neurath, M. F. & Atreya, R. Role of the IL23/IL17 pathway in Crohn’s disease. Front. Immunol. 12, 622934 (2021).
pubmed: 33859636
pmcid: 8042267
doi: 10.3389/fimmu.2021.622934
Sewell, G. W. & Kaser, A. Interleukin-23 in the pathogenesis of inflammatory bowel disease and implications for therapeutic intervention. J. Crohns Colitis 16, ii3–ii19 (2022).
pubmed: 35553667
pmcid: 9097674
doi: 10.1093/ecco-jcc/jjac034
Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).
pubmed: 22595313
doi: 10.1136/gutjnl-2011-301668
Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am. J. Gastroenterol. 111, 1599–1607 (2016).
pubmed: 27481309
doi: 10.1038/ajg.2016.298
Schnell, A., Littman, D. R. & Kuchroo, V. K. T
pubmed: 36596896
doi: 10.1038/s41590-022-01387-9
Tindemans, I., Joosse, M. E. & Samsom, J. N. Dissecting the heterogeneity in T-cell mediated inflammation in IBD. Cells 9, 110 (2020).
pubmed: 31906479
pmcid: 7016883
doi: 10.3390/cells9010110
Alexander, K. L. et al. Human microbiota flagellins drive adaptive immune responses in Crohn’s disease. Gastroenterology 161, 522–535.e526 (2021).
pubmed: 33844987
doi: 10.1053/j.gastro.2021.03.064
Calderon-Gomez, E. et al. Commensal-specific CD4
pubmed: 27267052
doi: 10.1053/j.gastro.2016.05.050
Ergin, A. et al. Impaired peripheral Th1 CD4+ T cell response to Escherichia coli proteins in patients with Crohn’s disease and ankylosing spondylitis. J. Clin. Immunol. 31, 998–1009 (2011).
pubmed: 21901394
doi: 10.1007/s10875-011-9575-x
Hegazy, A. N. et al. Circulating and tissue-resident CD4
pubmed: 28782508
doi: 10.1053/j.gastro.2017.07.047
Morgan, N. N. et al. Crohn’s Disease patients uniquely contain inflammatory responses to flagellin in a CD4 effector memory subset. Inflamm. Bowel Dis. 28, 1893–1903 (2022).
Morgan, N. N. & Mannon, P. J. Flagellin-specific CD4 cytokine production in Crohn disease and controls is limited to a small subset of antigen-induced CD40L
pubmed: 33298614
doi: 10.4049/jimmunol.2000918
Pedersen, T. K. et al. The CD4
Shen, C., Landers, C. J., Derkowski, C., Elson, C. O. & Targan, S. R. Enhanced CBir1-specific innate and adaptive immune responses in Crohn’s disease. Inflamm. Bowel Dis. 14, 1641–1651 (2008).
pubmed: 18825772
doi: 10.1002/ibd.20645
Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355.e1315 (2019).
pubmed: 30799037
doi: 10.1016/j.cell.2019.01.041
Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031.e1014 (2021).
pubmed: 33548172
pmcid: 7936855
doi: 10.1016/j.cell.2021.01.016
Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).
pubmed: 34811531
pmcid: 8622360
doi: 10.1038/s41564-021-00983-z
Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).
pubmed: 33707263
pmcid: 10114606
doi: 10.1126/science.abd0919
Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via type 17 immunity. Cell 185, 831–846 e814 (2022).
pubmed: 35176228
pmcid: 8897247
doi: 10.1016/j.cell.2022.01.017
Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).
pubmed: 35296857
pmcid: 9166917
doi: 10.1038/s41586-022-04502-w
Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388.e376 (2019).
pubmed: 30850233
pmcid: 6417942
doi: 10.1016/j.chom.2019.01.007
Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).
pubmed: 34262174
pmcid: 8904204
doi: 10.1038/s41586-021-03722-w
Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).
pubmed: 17486092
doi: 10.1038/ni1467
Gerard, R., Sendid, B., Colombel, J. F., Poulain, D. & Jouault, T. An immunological link between Candida albicans colonization and Crohn’s disease. Crit. Rev. Microbiol. 41, 135–139 (2015).
pubmed: 23855357
doi: 10.3109/1040841X.2013.810587
Auchtung, T. A. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3, e00092–18 (2018).
pubmed: 29600282
pmcid: 5874442
doi: 10.1128/mSphere.00092-18
Nash, A. K. et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome 5, 153 (2017).
pubmed: 29178920
pmcid: 5702186
doi: 10.1186/s40168-017-0373-4
Raimondi, S. et al. Longitudinal survey of fungi in the human gut: Its profiling, phenotyping, and colonization. Front. Microbiol. 10, 1575 (2019).
pubmed: 31354669
pmcid: 6636193
doi: 10.3389/fmicb.2019.01575
Bacher, P. et al. Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire. J. Immunol. 190, 3967–3976 (2013).
pubmed: 23479226
doi: 10.4049/jimmunol.1202221
Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).
pubmed: 26843508
doi: 10.1136/gutjnl-2015-310746
Ferrante, M. et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut 56, 1394–1403 (2007).
pubmed: 17456509
pmcid: 2000264
doi: 10.1136/gut.2006.108043
Sivananthan, K. & Petersen, A. M. Review of Saccharomyces boulardii as a treatment option in IBD. Immunopharmacol. Immunotoxicol. 40, 465–475 (2018).
pubmed: 29771163
doi: 10.1080/08923973.2018.1469143
Preglej, T. & Ellmeier, W. CD4
pubmed: 35568324
doi: 10.1016/j.imlet.2022.05.001
Albrecht, I. et al. Persistence of effector memory Th1 cells is regulated by Hopx. Eur. J. Immunol. 40, 2993–3006 (2010).
pubmed: 21061432
doi: 10.1002/eji.201040936
Maschmeyer, P. et al. Immunological memory in rheumatic inflammation—a roadblock to tolerance induction. Nat. Rev. Rheumatol. 17, 291–305 (2021).
pubmed: 33824526
doi: 10.1038/s41584-021-00601-6
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
pubmed: 24658644
pmcid: 4122333
doi: 10.1038/nbt.2859
Heuberger, C. E. et al. MHC class II antigen presentation by intestinal epithelial cells fine-tunes bacteria-reactive CD4 T cell responses. Mucosal Immunol. (in the press).
Halfvarson, J. et al. Age determines the risk of familial inflammatory bowel disease—a nationwide study. Aliment. Pharm. Ther. 56, 491–500 (2022).
doi: 10.1111/apt.16938
Halme, L. et al. Family and twin studies in inflammatory bowel disease. World J. Gastroenterol. 12, 3668–3672 (2006).
pubmed: 16773682
pmcid: 4087458
doi: 10.3748/wjg.v12.i23.3668
Choung, R. S. et al. Preclinical serological signatures are associated with complicated Crohn’s disease phenotype at diagnosis. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2023.01.033 (2023).
Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).
pubmed: 32165208
doi: 10.1053/j.gastro.2020.03.007
Keita, A. V. et al. Gut barrier dysfunction—a primary defect in twins with Crohn’s disease predominantly caused by genetic predisposition. J. Crohns Colitis 12, 1200–1209 (2018).
pubmed: 29659773
pmcid: 6225972
doi: 10.1093/ecco-jcc/jjy045
Moosmann, C., Muller, T. R., Busch, D. H. & Schober, K. Orthotopic T-cell receptor replacement in primary human T cells using CRISPR–Cas9-mediated homology-directed repair. STAR Protoc. 3, 101031 (2022).
pubmed: 34977677
doi: 10.1016/j.xpro.2021.101031
Schober, K. et al. Orthotopic replacement of T-cell receptor alpha- and beta-chains with preservation of near-physiological T-cell function. Nat. Biomed. Eng. 3, 974–984 (2019).
pubmed: 31182835
doi: 10.1038/s41551-019-0409-0
Büchl, N. R. & Seiler, H. Yeasts and molds: Yeasts in milk and dairy products. In Encyclopedia of Dairy Sciences, 2nd edn (eds Fuquay, J. W., Fox, P.F. & McSweeney, P. L. H.) pp 744–753 (2011).
Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014).
pubmed: 25036636
pmcid: 4222527
doi: 10.1016/j.cell.2014.05.041
Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484, 514–518 (2012).
pubmed: 22466287
doi: 10.1038/nature10957
Brabec, T. et al. Epithelial antigen presentation controls commensal-specific intraepithelial T-cells in the gut. Preprint at bioRxiv https://doi.org/10.1101/2022.08.21.504672 (2022).
Merger, M. et al. Defining the roles of perforin, Fas/FasL, and tumour necrosis factor alpha in T cell induced mucosal damage in the mouse intestine. Gut 51, 155–163 (2002).
pubmed: 12117872
pmcid: 1773316
doi: 10.1136/gut.51.2.155
Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).
pubmed: 33446526
pmcid: 8326743
doi: 10.1126/science.aay5731
Main, J. et al. Antibody to Saccharomyces cerevisiae (bakers’ yeast) in Crohn’s disease. Br. Med. J. 297, 1105–1106 (1988).
doi: 10.1136/bmj.297.6656.1105
McKenzie, H., Main, J., Pennington, C. R. & Parratt, D. Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. Gut 31, 536–538 (1990).
pubmed: 2190866
pmcid: 1378569
doi: 10.1136/gut.31.5.536
Bacher, P. et al. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167, 1067–1078.e1016 (2016).
pubmed: 27773482
doi: 10.1016/j.cell.2016.09.050
Bacher, P. et al. Low-avidity CD4
pubmed: 33296686
pmcid: 7689350
doi: 10.1016/j.immuni.2020.11.016
Saggau, C. et al. The pre-exposure SARS-CoV-2-specific T cell repertoire determines the quality of the immune response to vaccination. Immunity 55, 1924–1939.e1925 (2022).
pubmed: 35985324
pmcid: 9372089
doi: 10.1016/j.immuni.2022.08.003
Oberg, H. H. et al. Novel bispecific antibodies increase gammadelta T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 74, 1349–1360 (2014).
pubmed: 24448235
doi: 10.1158/0008-5472.CAN-13-0675
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601
pmcid: 5241818
doi: 10.1038/ncomms14049
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532
pmcid: 5802054
doi: 10.1186/s13059-017-1382-0
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819
pmcid: 6884693
doi: 10.1038/s41592-019-0619-0
Sturm, G. et al. Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-sequencing data. Bioinformatics 36, 4817–4818 (2020).
pubmed: 32614448
pmcid: 7751015
doi: 10.1093/bioinformatics/btaa611
Sadras, V. & Bongiovanni, R. Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crops Res. 90, 303–310 (2004).
doi: 10.1016/j.fcr.2004.04.003
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303