Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic T


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
10 2023
Historique:
received: 08 03 2023
accepted: 22 08 2023
medline: 23 10 2023
pubmed: 26 9 2023
entrez: 25 9 2023
Statut: ppublish

Résumé

Aberrant CD4

Identifiants

pubmed: 37749331
doi: 10.1038/s41591-023-02556-5
pii: 10.1038/s41591-023-02556-5
pmc: PMC10579100
mid: EMS188949
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2602-2614

Subventions

Organisme : European Research Council
ID : 101040023
Pays : International
Organisme : NIH HHS
ID : R01DK121977
Pays : United States
Organisme : NIH HHS
ID : R01AI163007
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Schmitt, H., Neurath, M. F. & Atreya, R. Role of the IL23/IL17 pathway in Crohn’s disease. Front. Immunol. 12, 622934 (2021).
pubmed: 33859636 pmcid: 8042267 doi: 10.3389/fimmu.2021.622934
Sewell, G. W. & Kaser, A. Interleukin-23 in the pathogenesis of inflammatory bowel disease and implications for therapeutic intervention. J. Crohns Colitis 16, ii3–ii19 (2022).
pubmed: 35553667 pmcid: 9097674 doi: 10.1093/ecco-jcc/jjac034
Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).
pubmed: 22595313 doi: 10.1136/gutjnl-2011-301668
Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am. J. Gastroenterol. 111, 1599–1607 (2016).
pubmed: 27481309 doi: 10.1038/ajg.2016.298
Schnell, A., Littman, D. R. & Kuchroo, V. K. T
pubmed: 36596896 doi: 10.1038/s41590-022-01387-9
Tindemans, I., Joosse, M. E. & Samsom, J. N. Dissecting the heterogeneity in T-cell mediated inflammation in IBD. Cells 9, 110 (2020).
pubmed: 31906479 pmcid: 7016883 doi: 10.3390/cells9010110
Alexander, K. L. et al. Human microbiota flagellins drive adaptive immune responses in Crohn’s disease. Gastroenterology 161, 522–535.e526 (2021).
pubmed: 33844987 doi: 10.1053/j.gastro.2021.03.064
Calderon-Gomez, E. et al. Commensal-specific CD4
pubmed: 27267052 doi: 10.1053/j.gastro.2016.05.050
Ergin, A. et al. Impaired peripheral Th1 CD4+ T cell response to Escherichia coli proteins in patients with Crohn’s disease and ankylosing spondylitis. J. Clin. Immunol. 31, 998–1009 (2011).
pubmed: 21901394 doi: 10.1007/s10875-011-9575-x
Hegazy, A. N. et al. Circulating and tissue-resident CD4
pubmed: 28782508 doi: 10.1053/j.gastro.2017.07.047
Morgan, N. N. et al. Crohn’s Disease patients uniquely contain inflammatory responses to flagellin in a CD4 effector memory subset. Inflamm. Bowel Dis. 28, 1893–1903 (2022).
Morgan, N. N. & Mannon, P. J. Flagellin-specific CD4 cytokine production in Crohn disease and controls is limited to a small subset of antigen-induced CD40L
pubmed: 33298614 doi: 10.4049/jimmunol.2000918
Pedersen, T. K. et al. The CD4
Shen, C., Landers, C. J., Derkowski, C., Elson, C. O. & Targan, S. R. Enhanced CBir1-specific innate and adaptive immune responses in Crohn’s disease. Inflamm. Bowel Dis. 14, 1641–1651 (2008).
pubmed: 18825772 doi: 10.1002/ibd.20645
Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355.e1315 (2019).
pubmed: 30799037 doi: 10.1016/j.cell.2019.01.041
Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031.e1014 (2021).
pubmed: 33548172 pmcid: 7936855 doi: 10.1016/j.cell.2021.01.016
Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).
pubmed: 34811531 pmcid: 8622360 doi: 10.1038/s41564-021-00983-z
Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).
pubmed: 33707263 pmcid: 10114606 doi: 10.1126/science.abd0919
Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via type 17 immunity. Cell 185, 831–846 e814 (2022).
pubmed: 35176228 pmcid: 8897247 doi: 10.1016/j.cell.2022.01.017
Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).
pubmed: 35296857 pmcid: 9166917 doi: 10.1038/s41586-022-04502-w
Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388.e376 (2019).
pubmed: 30850233 pmcid: 6417942 doi: 10.1016/j.chom.2019.01.007
Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).
pubmed: 34262174 pmcid: 8904204 doi: 10.1038/s41586-021-03722-w
Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).
pubmed: 17486092 doi: 10.1038/ni1467
Gerard, R., Sendid, B., Colombel, J. F., Poulain, D. & Jouault, T. An immunological link between Candida albicans colonization and Crohn’s disease. Crit. Rev. Microbiol. 41, 135–139 (2015).
pubmed: 23855357 doi: 10.3109/1040841X.2013.810587
Auchtung, T. A. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3, e00092–18 (2018).
pubmed: 29600282 pmcid: 5874442 doi: 10.1128/mSphere.00092-18
Nash, A. K. et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome 5, 153 (2017).
pubmed: 29178920 pmcid: 5702186 doi: 10.1186/s40168-017-0373-4
Raimondi, S. et al. Longitudinal survey of fungi in the human gut: Its profiling, phenotyping, and colonization. Front. Microbiol. 10, 1575 (2019).
pubmed: 31354669 pmcid: 6636193 doi: 10.3389/fmicb.2019.01575
Bacher, P. et al. Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire. J. Immunol. 190, 3967–3976 (2013).
pubmed: 23479226 doi: 10.4049/jimmunol.1202221
Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).
pubmed: 26843508 doi: 10.1136/gutjnl-2015-310746
Ferrante, M. et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut 56, 1394–1403 (2007).
pubmed: 17456509 pmcid: 2000264 doi: 10.1136/gut.2006.108043
Sivananthan, K. & Petersen, A. M. Review of Saccharomyces boulardii as a treatment option in IBD. Immunopharmacol. Immunotoxicol. 40, 465–475 (2018).
pubmed: 29771163 doi: 10.1080/08923973.2018.1469143
Preglej, T. & Ellmeier, W. CD4
pubmed: 35568324 doi: 10.1016/j.imlet.2022.05.001
Albrecht, I. et al. Persistence of effector memory Th1 cells is regulated by Hopx. Eur. J. Immunol. 40, 2993–3006 (2010).
pubmed: 21061432 doi: 10.1002/eji.201040936
Maschmeyer, P. et al. Immunological memory in rheumatic inflammation—a roadblock to tolerance induction. Nat. Rev. Rheumatol. 17, 291–305 (2021).
pubmed: 33824526 doi: 10.1038/s41584-021-00601-6
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
pubmed: 24658644 pmcid: 4122333 doi: 10.1038/nbt.2859
Heuberger, C. E. et al. MHC class II antigen presentation by intestinal epithelial cells fine-tunes bacteria-reactive CD4 T cell responses. Mucosal Immunol. (in the press).
Halfvarson, J. et al. Age determines the risk of familial inflammatory bowel disease—a nationwide study. Aliment. Pharm. Ther. 56, 491–500 (2022).
doi: 10.1111/apt.16938
Halme, L. et al. Family and twin studies in inflammatory bowel disease. World J. Gastroenterol. 12, 3668–3672 (2006).
pubmed: 16773682 pmcid: 4087458 doi: 10.3748/wjg.v12.i23.3668
Choung, R. S. et al. Preclinical serological signatures are associated with complicated Crohn’s disease phenotype at diagnosis. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2023.01.033 (2023).
Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).
pubmed: 32165208 doi: 10.1053/j.gastro.2020.03.007
Keita, A. V. et al. Gut barrier dysfunction—a primary defect in twins with Crohn’s disease predominantly caused by genetic predisposition. J. Crohns Colitis 12, 1200–1209 (2018).
pubmed: 29659773 pmcid: 6225972 doi: 10.1093/ecco-jcc/jjy045
Moosmann, C., Muller, T. R., Busch, D. H. & Schober, K. Orthotopic T-cell receptor replacement in primary human T cells using CRISPR–Cas9-mediated homology-directed repair. STAR Protoc. 3, 101031 (2022).
pubmed: 34977677 doi: 10.1016/j.xpro.2021.101031
Schober, K. et al. Orthotopic replacement of T-cell receptor alpha- and beta-chains with preservation of near-physiological T-cell function. Nat. Biomed. Eng. 3, 974–984 (2019).
pubmed: 31182835 doi: 10.1038/s41551-019-0409-0
Büchl, N. R. & Seiler, H. Yeasts and molds: Yeasts in milk and dairy products. In Encyclopedia of Dairy Sciences, 2nd edn (eds Fuquay, J. W., Fox, P.F. & McSweeney, P. L. H.) pp 744–753 (2011).
Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014).
pubmed: 25036636 pmcid: 4222527 doi: 10.1016/j.cell.2014.05.041
Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484, 514–518 (2012).
pubmed: 22466287 doi: 10.1038/nature10957
Brabec, T. et al. Epithelial antigen presentation controls commensal-specific intraepithelial T-cells in the gut. Preprint at bioRxiv https://doi.org/10.1101/2022.08.21.504672 (2022).
Merger, M. et al. Defining the roles of perforin, Fas/FasL, and tumour necrosis factor alpha in T cell induced mucosal damage in the mouse intestine. Gut 51, 155–163 (2002).
pubmed: 12117872 pmcid: 1773316 doi: 10.1136/gut.51.2.155
Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).
pubmed: 33446526 pmcid: 8326743 doi: 10.1126/science.aay5731
Main, J. et al. Antibody to Saccharomyces cerevisiae (bakers’ yeast) in Crohn’s disease. Br. Med. J. 297, 1105–1106 (1988).
doi: 10.1136/bmj.297.6656.1105
McKenzie, H., Main, J., Pennington, C. R. & Parratt, D. Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. Gut 31, 536–538 (1990).
pubmed: 2190866 pmcid: 1378569 doi: 10.1136/gut.31.5.536
Bacher, P. et al. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167, 1067–1078.e1016 (2016).
pubmed: 27773482 doi: 10.1016/j.cell.2016.09.050
Bacher, P. et al. Low-avidity CD4
pubmed: 33296686 pmcid: 7689350 doi: 10.1016/j.immuni.2020.11.016
Saggau, C. et al. The pre-exposure SARS-CoV-2-specific T cell repertoire determines the quality of the immune response to vaccination. Immunity 55, 1924–1939.e1925 (2022).
pubmed: 35985324 pmcid: 9372089 doi: 10.1016/j.immuni.2022.08.003
Oberg, H. H. et al. Novel bispecific antibodies increase gammadelta T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 74, 1349–1360 (2014).
pubmed: 24448235 doi: 10.1158/0008-5472.CAN-13-0675
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601 pmcid: 5241818 doi: 10.1038/ncomms14049
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532 pmcid: 5802054 doi: 10.1186/s13059-017-1382-0
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
Sturm, G. et al. Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-sequencing data. Bioinformatics 36, 4817–4818 (2020).
pubmed: 32614448 pmcid: 7751015 doi: 10.1093/bioinformatics/btaa611
Sadras, V. & Bongiovanni, R. Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crops Res. 90, 303–310 (2004).
doi: 10.1016/j.fcr.2004.04.003
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303

Auteurs

Gabriela Rios Martini (GR)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Ekaterina Tikhonova (E)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Elisa Rosati (E)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Meghan Bialt DeCelie (MB)

The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Laura Katharina Sievers (LK)

Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Florian Tran (F)

Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Matthias Lessing (M)

Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Arne Bergfeld (A)

Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Sophia Hinz (S)

Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Susanna Nikolaus (S)

Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Julia Kümpers (J)

Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Anna Matysiak (A)

Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Philipp Hofmann (P)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Carina Saggau (C)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Stephan Schneiders (S)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Ann-Kristin Kamps (AK)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Gunnar Jacobs (G)

Institute of Epidemiology, Christian-Albrechts-University of Kiel and popgen Biobank, University Medical Center Schleswig-Holstein, Kiel, Germany.

Wolfgang Lieb (W)

Institute of Epidemiology, Christian-Albrechts-University of Kiel and popgen Biobank, University Medical Center Schleswig-Holstein, Kiel, Germany.

Jochen Maul (J)

Gastroenterologie am Bayerischen Platz, Berlin, Germany.
Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

Britta Siegmund (B)

Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

Barbara Seegers (B)

Gastroenterology-Hepatology Center Kiel, Kiel, Germany.

Holger Hinrichsen (H)

Gastroenterology-Hepatology Center Kiel, Kiel, Germany.

Hans-Heinrich Oberg (HH)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Daniela Wesch (D)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Stefan Bereswill (S)

Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

Markus M Heimesaat (MM)

Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

Jan Rupp (J)

Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.

Olaf Kniemeyer (O)

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.

Axel A Brakhage (AA)

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.
Friedrich Schiller Universität, Jena, Germany.

Sascha Brunke (S)

Institute of Microbiology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.

Bernhard Hube (B)

Friedrich Schiller Universität, Jena, Germany.
Institute of Microbiology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.

Konrad Aden (K)

Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Andre Franke (A)

Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Iliyan D Iliev (ID)

The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Alexander Scheffold (A)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Stefan Schreiber (S)

Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.

Petra Bacher (P)

Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany. p.bacher@ikmb.uni-kiel.de.
Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany. p.bacher@ikmb.uni-kiel.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH