B7H3-targeting chimeric antigen receptor modification enhances antitumor effect of Vγ9Vδ2 T cells in glioblastoma.
B7-H3
BTN2A1
BTN3A1
Glioblastoma
Vγ9Vδ2 T cells
Journal
Journal of translational medicine
ISSN: 1479-5876
Titre abrégé: J Transl Med
Pays: England
ID NLM: 101190741
Informations de publication
Date de publication:
28 09 2023
28 09 2023
Historique:
received:
06
07
2023
accepted:
07
09
2023
medline:
4
10
2023
pubmed:
29
9
2023
entrez:
28
9
2023
Statut:
epublish
Résumé
Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. This study investigates the therapeutic potential of human Vγ9Vδ2 T cells in GBM treatment. The sensitivity of different glioma specimens to Vγ9Vδ2 T cell-mediated cytotoxicity is assessed using a patient-derived tumor cell clusters (PTCs) model. The study evaluates the anti-tumor effect of Vγ9Vδ2 T cells in 26 glioma cases through the PTCs model. Protein expression of BTN2A1 and BTN3A1, along with gene expression related to lipid metabolism and glioma inflammatory response pathways, is analyzed in matched tumor tissue samples. Additionally, the study explores two strategies to re-sensitize tumors in the weak anti-tumor effect (WAT) group: utilizing a BTN3A1 agonistic antibody or employing bisphosphonates to inhibit farnesyl diphosphate synthase (FPPS). Furthermore, the study investigates the efficacy of genetically engineered Vγ9Vδ2 T cells expressing Car-B7H3 in targeting diverse GBM specimens. The results demonstrate that Vγ9Vδ2 T cells display a stronger anti-tumor effect (SAT) in six glioma cases, while showing a weaker effect (WAT) in twenty cases. The SAT group exhibits elevated protein expression of BTN2A1 and BTN3A1, accompanied by differential gene expression related to lipid metabolism and glioma inflammatory response pathways. Importantly, the study reveals that the WAT group GBM can enhance Vγ9Vδ2 T cell-mediated killing sensitivity by incorporating either a BTN3A1 agonistic antibody or bisphosphonates. Both approaches support TCR-BTN mediated tumor recognition, which is distinct from the conventional MHC-peptide recognition by αβ T cells. Furthermore, the study explores an alternative strategy by genetically engineering Vγ9Vδ2 T cells with Car-B7H3, and both non-engineered and Car-B7H3 Vγ9Vδ2 T cells demonstrate promising efficacy in vivo, underscoring the versatile potential of Vγ9Vδ2 T cells for GBM treatment. Vγ9Vδ2 T cells demonstrate a robust anti-tumor effect in some glioma cases, while weaker in others. Elevated BTN2A1 and BTN3A1 expression correlates with improved response. WAT group tumors can be sensitized using a BTN3A1 agonistic antibody or bisphosphonates. Genetically engineered Vγ9Vδ2 T cells, i.e., Car-B7H3, show promising efficacy. These results together highlight the versatility of Vγ9Vδ2 T cells for GBM treatment.
Sections du résumé
BACKGROUND
Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. This study investigates the therapeutic potential of human Vγ9Vδ2 T cells in GBM treatment. The sensitivity of different glioma specimens to Vγ9Vδ2 T cell-mediated cytotoxicity is assessed using a patient-derived tumor cell clusters (PTCs) model.
METHODS
The study evaluates the anti-tumor effect of Vγ9Vδ2 T cells in 26 glioma cases through the PTCs model. Protein expression of BTN2A1 and BTN3A1, along with gene expression related to lipid metabolism and glioma inflammatory response pathways, is analyzed in matched tumor tissue samples. Additionally, the study explores two strategies to re-sensitize tumors in the weak anti-tumor effect (WAT) group: utilizing a BTN3A1 agonistic antibody or employing bisphosphonates to inhibit farnesyl diphosphate synthase (FPPS). Furthermore, the study investigates the efficacy of genetically engineered Vγ9Vδ2 T cells expressing Car-B7H3 in targeting diverse GBM specimens.
RESULTS
The results demonstrate that Vγ9Vδ2 T cells display a stronger anti-tumor effect (SAT) in six glioma cases, while showing a weaker effect (WAT) in twenty cases. The SAT group exhibits elevated protein expression of BTN2A1 and BTN3A1, accompanied by differential gene expression related to lipid metabolism and glioma inflammatory response pathways. Importantly, the study reveals that the WAT group GBM can enhance Vγ9Vδ2 T cell-mediated killing sensitivity by incorporating either a BTN3A1 agonistic antibody or bisphosphonates. Both approaches support TCR-BTN mediated tumor recognition, which is distinct from the conventional MHC-peptide recognition by αβ T cells. Furthermore, the study explores an alternative strategy by genetically engineering Vγ9Vδ2 T cells with Car-B7H3, and both non-engineered and Car-B7H3 Vγ9Vδ2 T cells demonstrate promising efficacy in vivo, underscoring the versatile potential of Vγ9Vδ2 T cells for GBM treatment.
CONCLUSIONS
Vγ9Vδ2 T cells demonstrate a robust anti-tumor effect in some glioma cases, while weaker in others. Elevated BTN2A1 and BTN3A1 expression correlates with improved response. WAT group tumors can be sensitized using a BTN3A1 agonistic antibody or bisphosphonates. Genetically engineered Vγ9Vδ2 T cells, i.e., Car-B7H3, show promising efficacy. These results together highlight the versatility of Vγ9Vδ2 T cells for GBM treatment.
Identifiants
pubmed: 37770968
doi: 10.1186/s12967-023-04514-8
pii: 10.1186/s12967-023-04514-8
pmc: PMC10537973
doi:
Substances chimiques
Receptors, Chimeric Antigen
0
Receptors, Antigen, T-Cell, gamma-delta
0
Diphosphonates
0
BTN3A1 protein, human
0
Butyrophilins
0
Antigens, CD
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
672Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Immunol Res. 2009;45(1):85-95
pubmed: 19711198
Cell Mol Immunol. 2021 Feb;18(2):427-439
pubmed: 32939032
Cancer Res. 2003 Dec 15;63(24):8996-9006
pubmed: 14695218
Crit Rev Biotechnol. 2022 Nov;42(7):1079-1098
pubmed: 34957875
Cancers (Basel). 2020 Mar 22;12(3):
pubmed: 32235752
Eur J Immunol. 2012 Jul;42(7):1668-76
pubmed: 22806069
Chem Biol. 2014 Aug 14;21(8):945-54
pubmed: 25065532
J Immunother. 2018 Jun;41(5):224-231
pubmed: 29683891
Front Immunol. 2020 Jul 02;11:1347
pubmed: 32714329
Front Immunol. 2021 Mar 10;12:631077
pubmed: 33777016
J Vis Exp. 2018 Sep 1;(139):
pubmed: 30222164
Neuro Oncol. 2020 Oct 30;22(12 Suppl 2):iv1-iv96
pubmed: 33123732
Eur J Immunol. 2017 Jun;47(6):982-992
pubmed: 28386905
Cancers (Basel). 2021 Jan 22;13(3):
pubmed: 33499101
Nat Med. 2020 May;26(5):712-719
pubmed: 32341579
Neurosurg Focus. 2000 Dec 15;9(6):e9
pubmed: 16817692
Nat Rev Immunol. 2015 Nov;15(11):683-91
pubmed: 26449179
Front Neurosci. 2021 May 25;15:662064
pubmed: 34113233
Cell Rep. 2021 Jul 13;36(2):109359
pubmed: 34260935
Front Immunol. 2021 Aug 30;12:660361
pubmed: 34526984
Front Immunol. 2022 Feb 21;13:817296
pubmed: 35265074
Science. 2020 Feb 7;367(6478):
pubmed: 31919129
Cell. 2018 Nov 1;175(4):1059-1073.e21
pubmed: 30270039
Neuro Oncol. 2009 Aug;11(4):357-67
pubmed: 19211933
Cancer Immunol Immunother. 2020 Jul;69(7):1375-1387
pubmed: 32078016
Crit Rev Immunol. 2006;26(2):149-88
pubmed: 16700651
Sci Transl Med. 2020 Jun 24;12(549):
pubmed: 32581131
Front Immunol. 2020 Jul 21;11:1405
pubmed: 32793196
Oncogene. 2020 Oct;39(40):6340-6353
pubmed: 32855525
J Neurooncol. 2010 May;97(3):409-18
pubmed: 19890606
Int J Mol Sci. 2021 Aug 18;22(16):
pubmed: 34445615
Clin Cancer Res. 2019 Dec 1;25(23):7218-7228
pubmed: 31506386
Front Immunol. 2019 Mar 22;10:555
pubmed: 30967876
Acta Neuropathol Commun. 2021 Apr 1;9(1):59
pubmed: 33795013
Immunity. 2020 Mar 17;52(3):487-498.e6
pubmed: 32155411
J Neurooncol. 2021 Jul;153(3):403-415
pubmed: 34125375
Oncoimmunology. 2013 Jan 1;2(1):e22892
pubmed: 23483102
Cancer Cell. 2019 Feb 11;35(2):221-237.e8
pubmed: 30753824
Front Immunol. 2017 Aug 28;8:1041
pubmed: 28894450
Immunity. 2019 Apr 16;50(4):1043-1053.e5
pubmed: 30902636
Oncoimmunology. 2015 Dec 10;5(4):e1093276
pubmed: 27141377
Nat Immunol. 2013 Sep;14(9):908-16
pubmed: 23872678
Acta Pharm Sin B. 2021 May;11(5):1129-1147
pubmed: 34094824
Clin Cancer Res. 2019 Apr 15;25(8):2560-2574
pubmed: 30655315
J Immunother Cancer. 2021 Oct;9(10):
pubmed: 34706886
Oncoimmunology. 2022 Oct 30;11(1):2138152
pubmed: 36338147
Acta Neuropathol. 2016 Jun;131(6):803-20
pubmed: 27157931
EBioMedicine. 2019 Sep;47:33-43
pubmed: 31466914
Cell Immunol. 2013 Jul-Aug;284(1-2):91-7
pubmed: 23954795
Neuro Oncol. 2018 Nov 9;20(suppl_7):vii6-vii16
pubmed: 29850889
Front Immunol. 2017 Oct 24;8:1381
pubmed: 29118758
JCI Insight. 2018 Jan 11;3(1):
pubmed: 29321369
Blood. 2011 Sep 15;118(11):3003-12
pubmed: 21768296
N Engl J Med. 2005 Mar 10;352(10):987-96
pubmed: 15758009
Nature. 2022 Mar;603(7903):934-941
pubmed: 35130560