Differential molecular programs of cutaneous anaplastic large cell lymphoma and CD30-positive transformed mycosis fungoides.

CD30-positive transformed mycosis fungoides cutaneous anaplastic large cell lymphoma differential diagnosis gene expression profile immunohistochemistry algorithm

Journal

Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960

Informations de publication

Date de publication:
2023
Historique:
received: 31 07 2023
accepted: 31 08 2023
medline: 1 11 2023
pubmed: 4 10 2023
entrez: 4 10 2023
Statut: epublish

Résumé

Discriminating between cutaneous anaplastic large cell lymphoma (cALCL) and CD30-positive transformed mycosis fungoides (CD30+ TMF) is challenging, particularly when they arise in the context of pre-existing mycosis fungoides. The development of molecular diagnostic tools was hampered by the rarity of both diseases and the limited understanding of their pathogenesis. In this study, we established a cohort comprising 25 cALCL cases and 25 CD30+ TMF cases, with transcriptomic data obtained from 31 samples. We compared the clinicopathological information and investigated the gene expression profiling between these two entities. Furthermore, we developed an immunohistochemistry (IHC) algorithm to differentiate these two entities clinically. Our investigation revealed distinct clinicopathological features and unique gene expression programs associated with cALCL and CD30+ TMF. cALCL and CD30+ TMF displayed marked differences in gene expression patterns. Notably, CD30+ TMF demonstrated enrichment of T cell receptor signaling pathways and an exhausted T cell phenotype, accompanied by infiltration of B cells, dendritic cells, and neurons. In contrast, cALCL cells expressed high levels of HLA class II genes, polarized towards a Th17 phenotype, and exhibited neutrophil infiltration. An IHC algorithm with BATF3 and TCF7 staining emerged as potential diagnostic markers for identifying these two entities. Our findings provide valuable insights into the differential molecular signatures associated with cALCL and CD30+ TMF, which contribute to their distinct clinicopathological behaviors. An appropriate IHC algorithm could be used as a potential diagnostic tool.

Sections du résumé

Background
Discriminating between cutaneous anaplastic large cell lymphoma (cALCL) and CD30-positive transformed mycosis fungoides (CD30+ TMF) is challenging, particularly when they arise in the context of pre-existing mycosis fungoides. The development of molecular diagnostic tools was hampered by the rarity of both diseases and the limited understanding of their pathogenesis.
Methods
In this study, we established a cohort comprising 25 cALCL cases and 25 CD30+ TMF cases, with transcriptomic data obtained from 31 samples. We compared the clinicopathological information and investigated the gene expression profiling between these two entities. Furthermore, we developed an immunohistochemistry (IHC) algorithm to differentiate these two entities clinically.
Results
Our investigation revealed distinct clinicopathological features and unique gene expression programs associated with cALCL and CD30+ TMF. cALCL and CD30+ TMF displayed marked differences in gene expression patterns. Notably, CD30+ TMF demonstrated enrichment of T cell receptor signaling pathways and an exhausted T cell phenotype, accompanied by infiltration of B cells, dendritic cells, and neurons. In contrast, cALCL cells expressed high levels of HLA class II genes, polarized towards a Th17 phenotype, and exhibited neutrophil infiltration. An IHC algorithm with BATF3 and TCF7 staining emerged as potential diagnostic markers for identifying these two entities.
Conclusions
Our findings provide valuable insights into the differential molecular signatures associated with cALCL and CD30+ TMF, which contribute to their distinct clinicopathological behaviors. An appropriate IHC algorithm could be used as a potential diagnostic tool.

Identifiants

pubmed: 37790936
doi: 10.3389/fimmu.2023.1270365
pmc: PMC10544577
doi:

Substances chimiques

Ki-1 Antigen 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1270365

Informations de copyright

Copyright © 2023 Lai, Liu, Liu, Sun and Wang.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Haematologica. 2022 Jul 01;107(7):1619-1632
pubmed: 34382383
J Invest Dermatol. 2018 May;138(5):1126-1136
pubmed: 29248547
Haematologica. 2013 Feb;98(2):247-54
pubmed: 22899583
Nat Commun. 2022 Mar 3;13(1):1158
pubmed: 35241665
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Blood. 2000 Apr 1;95(7):2212-8
pubmed: 10733487
Nat Biotechnol. 2015 Mar;33(3):290-5
pubmed: 25690850
Acta Derm Venereol. 2021 Dec 07;101(12):adv00613
pubmed: 34853863
Virchows Arch. 2021 Aug;479(2):377-383
pubmed: 33604757
Blood. 2004 Feb 15;103(4):1438-44
pubmed: 14563641
Haematologica. 2019 Aug;104(8):1626-1632
pubmed: 30630986
Blood. 2009 Jun 4;113(23):5896-904
pubmed: 19351960
Cancer Discov. 2020 Mar;10(3):406-421
pubmed: 31857391
Int J Dermatol. 2012 Aug;51(8):930-4
pubmed: 22788808
Blood. 2021 Oct 7;138(14):1225-1236
pubmed: 34115827
BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7
pubmed: 16723010
Genome Biol. 2014;15(12):550
pubmed: 25516281
J Invest Dermatol. 2023 Aug 10;:
pubmed: 37565939
Mod Pathol. 2011 Apr;24(4):596-605
pubmed: 21169992
Leukemia. 2018 Sep;32(9):1994-2007
pubmed: 29588546
Nat Med. 2015 Aug;21(8):938-945
pubmed: 26193342
Blood. 2022 Aug 4;140(5):419-437
pubmed: 34758074
Cell Res. 2020 Nov;30(11):950-965
pubmed: 32901110
Acta Derm Venereol. 2019 Jun 1;99(7):640-646
pubmed: 30868169
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
Am J Clin Pathol. 2021 Aug 4;156(3):350-355
pubmed: 33769436
Nat Immunol. 2022 Jun;23(6):836-847
pubmed: 35624209
Br J Dermatol. 2015 Jun;172(6):1547-1554
pubmed: 25645336
J Invest Dermatol. 2021 May;141(5):1360-1363.e3
pubmed: 33049271
Cell. 1999 Oct 29;99(3):247-57
pubmed: 10555141
Leuk Res. 2013 Apr;37(4):396-400
pubmed: 23332472
J Am Acad Dermatol. 2014 Feb;70(2):374-6
pubmed: 24438952
Int J Mol Sci. 2022 Mar 24;23(7):
pubmed: 35408897
J Invest Dermatol. 2023 Aug 4;:
pubmed: 37544586
Blood. 2004 Jun 1;103(11):4251-8
pubmed: 14976040
Blood. 2019 Apr 18;133(16):1703-1714
pubmed: 30635287
J Clin Oncol. 2010 Nov 1;28(31):4730-9
pubmed: 20855822
J Dtsch Dermatol Ges. 2012 May;10(5):331-9
pubmed: 22525148
J Am Acad Dermatol. 2015 Jan;72(1):159-67
pubmed: 25440432
Am J Surg Pathol. 1992 Jun;16(6):543-52
pubmed: 1599034
Science. 2021 Dec 17;374(6574):abe6474
pubmed: 34914499
Cancer Immunol Res. 2018 Aug;6(8):900-909
pubmed: 29895574
Nat Rev Dis Primers. 2021 Aug 26;7(1):61
pubmed: 34446710
Blood. 2005 May 15;105(10):3768-85
pubmed: 15692063
Br J Dermatol. 2015 Jun;172(6):1478-1479
pubmed: 26036155
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Leukemia. 2009 Nov;23(11):2129-38
pubmed: 19657361
JAMA Dermatol. 2023 Aug 16;:
pubmed: 37585188
Turk J Haematol. 2018 Mar 1;35(1):35-41
pubmed: 28533196
Cancer Res. 2005 Sep 1;65(17):7628-34
pubmed: 16140928
J Invest Dermatol. 2021 Mar;141(3):607-618.e6
pubmed: 32771472
J Invest Dermatol. 2010 Jun;130(6):1707-18
pubmed: 20130593
Blood. 2012 Feb 16;119(7):1643-9
pubmed: 22160616
J Invest Dermatol. 2018 Aug;138(8):1795-1804
pubmed: 29510190
BMC Bioinformatics. 2013 Jan 16;14:7
pubmed: 23323831
J Immunol. 2013 Mar 1;190(5):2345-53
pubmed: 23365084
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Cell. 2021 Dec 9;184(25):6101-6118.e13
pubmed: 34852236
Nat Rev Immunol. 2019 Nov;19(11):665-674
pubmed: 31570879
J Invest Dermatol. 2010 Mar;130(3):816-25
pubmed: 19812605
J Clin Oncol. 2018 Apr 1;36(10):942-950
pubmed: 29394125
Leukemia. 2018 Jan;32(1):92-101
pubmed: 28659618
Int J Oral Sci. 2022 Feb 14;14(1):8
pubmed: 35153298
Nat Biotechnol. 2014 Sep;32(9):896-902
pubmed: 25150836
Am J Pathol. 1988 Aug;132(2):265-77
pubmed: 3261136
Genome Biol. 2017 Nov 15;18(1):220
pubmed: 29141660
Blood. 2019 Dec 12;134(24):2159-2170
pubmed: 31562134
Blood. 2007 Oct 15;110(8):3015-27
pubmed: 17638852
Cell. 2018 Feb 8;172(4):650-665
pubmed: 29425488

Auteurs

Pan Lai (P)

Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.
Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.
National Clinical Research Center for Skin and Immune Diseases, Beijing, China.

Fengjie Liu (F)

Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

Xiangjun Liu (X)

Department of Dermatology, Shandong University Qilu Hospital, Jinan, China.

Jingru Sun (J)

Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.
Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.
National Clinical Research Center for Skin and Immune Diseases, Beijing, China.

Yang Wang (Y)

Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.
Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.
National Clinical Research Center for Skin and Immune Diseases, Beijing, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH