Alteration of skeletal muscle energy metabolism assessed by
COVID-19
fatigue
multiple sclerosis
muscle metabolism
phosphorus-31 MRS
Journal
NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
03
07
2023
received:
08
09
2022
accepted:
25
07
2023
medline:
7
11
2023
pubmed:
6
10
2023
entrez:
5
10
2023
Statut:
ppublish
Résumé
In this second part of a two-part paper, we intend to demonstrate the impact of the previously proposed advanced quality control pipeline. To understand its benefit and challenge the proposed methodology in a real scenario, we chose to compare the outcome when applying it to the analysis of two patient populations with significant but highly different types of fatigue: COVID-19 and multiple sclerosis (MS).
Substances chimiques
Phosphocreatine
020IUV4N33
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e5031Subventions
Organisme : LABEX PRIMES
ID : ANR-11-LABX-0063
Organisme : Siemens Healthineers
Organisme : European Union's Horizon 2020 research and innovation programme
ID : 801075
Informations de copyright
© 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Références
Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228-2238. doi:10.1249/MSS.0000000000000929
Macintosh BR, Rassier DE. What is fatigue? Can J Appl Physiol. 2002;27(1):42-55. doi:10.1139/h02-003
Weiss K, Schär M, Panjrath GS, et al. Fatigability, exercise intolerance, and abnormal skeletal muscle energetics in heart failure. Circ Heart Fail. 2017;10(7):e004129. doi:10.1161/CIRCHEARTFAILURE.117.004129
Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020;15(11):e0240784. doi:10.1371/journal.pone.0240784
Coudeyre E, Cormier C, Costes F, Lefevre-Colau MM, Grolier M. Réadaptation musculaire après infection à COVID-19. Rev Rhum Monogr. 2021;88(3):251-254. doi:10.1016/j.monrhu.2021.03.002
Ali AM, Kunugi H. Skeletal muscle damage in COVID-19: a call for action. Medicina. 2021;57(4):372. doi:10.3390/medicina57040372
Sagarra-Romero L, Viñas-Barros A. COVID-19: short and long-term effects of hospitalization on muscular weakness in the elderly. Int J Environ Res Public Health. 2020;17(23):8715. doi:10.3390/ijerph17238715
Afari N, Buchwald D. Chronic fatigue syndrome: a review. Am J Psychiatry. 2003;160(2):221-236. doi:10.1176/appi.ajp.160.2.221
Kent-Braun JA, Sharma KR, Weiner MW, Miller RG. Effects of exercise on muscle activation and metabolism in multiple sclerosis. Muscle Nerve. 1994;17(10):1162-1169. doi:10.1002/mus.880171006
Sharma KR, Kent-Braun J, Mynhier MA, Weiner MW, Miller RG. Evidence of an abnormal intramuscular component of fatigue in multiple sclerosis. Muscle Nerve. 1995;18(12):1403-1411. doi:10.1002/mus.880181210
Kent-Braun JA, Sharma KR, Miller RG, Weiner MW. Postexercise phosphocreatine resynthesis is slowed in multiple sclerosis. Muscle Nerve. 1994;17(8):835-841. doi:10.1002/mus.880170802
Vergès S, Perrey S. L'état énergétique du muscle fatigué vu par la résonance magnétique nucléaire. Sci Mot. 2010;70:13-19. doi:10.1051/sm/2010006
Kaminsky P, Walker P, Robert J, Duc M. Spectroscopie du phosphore en résonance magnétique nucléaire. Rev Med Interne. 1991;12(2):128-138. doi:10.1016/S0248-8663(05)81376-1
Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure: on behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine (see contributors to the project in the appendix). Intensive Care Med. 1996;22(7):707-710. doi:10.1007/BF01709751
Le Gall JR. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957-2963. doi:10.1001/jama.1993.03510240069035
Fayed M, Patel N, Angappan S, et al. Sequential organ failure assessment (SOFA) score and mortality prediction in patients with severe respiratory distress secondary to COVID-19. Cureus. 2022;16(7):e26911. doi:10.7759/cureus.26911
Noseworthy JH, Vandervoort MK, Wong CJ, Ebers GC. Interrater variability with the Expanded Disability Status Scale (EDSS) and Functional Systems (FS) in a multiple sclerosis clinical trial. Neurology. 1990;40(6):971-975. doi:10.1212/WNL.40.6.971
Luo Y, de Graaf RA, DelaBarre L, Tannús A, Garwood M. BISTRO: an outer-volume suppression method that tolerates RF field inhomogeneity: B1-Insensitive Outer-Volume Suppression. Magn Reson Med. 2001;45(6):1095-1102. doi:10.1002/mrm.1144
Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med. 1983;1(1):77-94.
Meyerspeer M, Boesch C, Cameron D, et al. 31P magnetic resonance spectroscopy in skeletal muscle: experts' consensus recommendations. NMR Biomed. 2021;34(5):e4246. doi:10.1002/nbm.4246
Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D. Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed. 2005;18(1):1-13. doi:10.1002/nbm.895
Sundberg CW, Prost RW, Fitts RH, Hunter SK. Bioenergetic basis for the increased fatigability with ageing. J Physiol. 2019;597(19):4943-4957. doi:10.1113/JP277803
Roussel M, Bendahan D, Mattei JP, Le Fur Y, Cozzone PJ. 31P magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability. Biochim Biophys Acta Bioenerg. 2000;1457(1-2):18-26. doi:10.1016/S0005-2728(99)00111-5
Trenell MI, Sue CM, Kemp GJ, Sachinwalla T, Thompson CH. Aerobic exercise and muscle metabolism in patients with mitochondrial myopathy. Muscle Nerve. 2006;33(4):524-531. doi:10.1002/mus.20484
Tonson A, Ratel S, Le Fur Y, Vilmen C, Cozzone PJ, Bendahan D. Muscle energetics changes throughout maturation: a quantitative 31P-MRS analysis. J Appl Physiol. 2010;109(6):1769-1778. doi:10.1152/japplphysiol.01423.2009
Iotti S, Gottardi G, Clementi V, Barbiroli B. The mono-exponential pattern of phosphocreatine recovery after muscle exercise is a particular case of a more complex behaviour. Biochim Biophys Acta Bioenerg. 2004;1608(2/3):131-139. doi:10.1016/j.bbabio.2003.11.003
Iotti S, Borsari M, Bendahan D. Oscillations in energy metabolism. Biochim Biophys Acta Bioenerg. 2010;1797(8):1353-1361. doi:10.1016/j.bbabio.2010.02.019
Nachbauer W, Boesch S, Schneider R, et al. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin. PLoS ONE. 2013;8(7):9. doi:10.1371/journal.pone.0069229
Orban A, Garg B, Sammi MK, et al. Effect of high-intensity exercise on multiple sclerosis function and phosphorous magnetic resonance spectroscopy outcomes. Med Sci Sports Exerc. 2019;51(7):1380-1386. doi:10.1249/MSS.0000000000001914
Ratkevicius A, Mizuno M, Povilonis E, Quistorff B. Energy metabolism of the gastrocnemius and soleus muscles during isometric voluntary and electrically induced contractions in man. J Physiol. 1998;507(2):593-602. doi:10.1111/j.1469-7793.1998.593bt.x
Argov Z, Löfberg M, Arnold DL. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve. 2000;23(9):1316-1334. doi:10.1002/1097-4598(200009)23:93.0.CO;2-I
Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol. 2000;526(1):203-210. doi:10.1111/j.1469-7793.2000.t01-1-00203.x
Fitzgerald LF, Christie AD, Kent JA. Heterogeneous effects of old age on human muscle oxidative capacity in vivo: a systematic review and meta-analysis. Appl Physiol Nutr Metab. 2016;41(11):1137-1145. doi:10.1139/apnm-2016-0195