Effects of multimodal low-opioid anesthesia protocol during on-pump coronary artery bypass grafting: a prospective cohort study.
Cardiopulmonary bypass
Coronary artery bypass grafting
IL-6
Low cardiac output syndrome
Multimodal low-opioid anesthesia protocol
Postoperative atrial fibrillation
Journal
Journal of cardiothoracic surgery
ISSN: 1749-8090
Titre abrégé: J Cardiothorac Surg
Pays: England
ID NLM: 101265113
Informations de publication
Date de publication:
06 Oct 2023
06 Oct 2023
Historique:
received:
01
02
2023
accepted:
30
09
2023
medline:
1
11
2023
pubmed:
7
10
2023
entrez:
6
10
2023
Statut:
epublish
Résumé
The most favorable anesthesia protocol during on-pump coronary artery bypass grafting (CABG) in patients with coronary heart disease remains unclear, despite previous publications regarding the interaction between anesthesia protocol and postoperative complications. The aim of the study was to compare the effect of a multimodal low-opioid anesthesia protocol (MLOP) on early postoperative complications during on-pump CABG. A single-center prospective cohort study including 120 patients undergoing on-pump CABG aged 18 to 65 years, divided into two groups according to undergoing MLOP or routine-opioid anesthesia protocol (ROP). The analyzed parameters were plasma IL-6 levels, complications, duration of mechanical ventilation, length of intensive care unit stay, and hospitalization. In the MLOP group, the levels of IL-6 at the end of the surgery were 25.6% significantly lower compared to the ROP group (33.4 ± 9.4 vs. 44.9 ± 15.9, p < 0.0001), the duration of mechanical ventilation was significantly shorter (2.0 (2.0; 3.0) h vs. 4.0 (3.0; 5.0) h, p < 0.001), the incidence of low cardiac output syndrome was almost two and half times lower (7 (11.7%) vs. 16 (26.7%), p = 0.037), and also the incidence of postoperative atrial fibrillation was significantly lower (9 (15.0%) vs. 19 (31.7%), p = 0.031). Our study confirms that using MLOP was characterized by significantly lower levels of IL-6 at the end of surgery and a lower incidence of low cardiac output syndrome and postoperative atrial fibrillation than ROP. The study is registered in clinicaltrials.gov №NCT05514652.
Sections du résumé
BACKGROUND
BACKGROUND
The most favorable anesthesia protocol during on-pump coronary artery bypass grafting (CABG) in patients with coronary heart disease remains unclear, despite previous publications regarding the interaction between anesthesia protocol and postoperative complications. The aim of the study was to compare the effect of a multimodal low-opioid anesthesia protocol (MLOP) on early postoperative complications during on-pump CABG.
METHODS
METHODS
A single-center prospective cohort study including 120 patients undergoing on-pump CABG aged 18 to 65 years, divided into two groups according to undergoing MLOP or routine-opioid anesthesia protocol (ROP). The analyzed parameters were plasma IL-6 levels, complications, duration of mechanical ventilation, length of intensive care unit stay, and hospitalization.
RESULTS
RESULTS
In the MLOP group, the levels of IL-6 at the end of the surgery were 25.6% significantly lower compared to the ROP group (33.4 ± 9.4 vs. 44.9 ± 15.9, p < 0.0001), the duration of mechanical ventilation was significantly shorter (2.0 (2.0; 3.0) h vs. 4.0 (3.0; 5.0) h, p < 0.001), the incidence of low cardiac output syndrome was almost two and half times lower (7 (11.7%) vs. 16 (26.7%), p = 0.037), and also the incidence of postoperative atrial fibrillation was significantly lower (9 (15.0%) vs. 19 (31.7%), p = 0.031).
CONCLUSION
CONCLUSIONS
Our study confirms that using MLOP was characterized by significantly lower levels of IL-6 at the end of surgery and a lower incidence of low cardiac output syndrome and postoperative atrial fibrillation than ROP.
TRIAL REGISTRATION
BACKGROUND
The study is registered in clinicaltrials.gov №NCT05514652.
Identifiants
pubmed: 37803334
doi: 10.1186/s13019-023-02395-y
pii: 10.1186/s13019-023-02395-y
pmc: PMC10559440
doi:
Substances chimiques
Analgesics, Opioid
0
Interleukin-6
0
Banques de données
ClinicalTrials.gov
['NCT05514652']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
272Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Severino P, D’Amato A, Pucci M, et al. Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction. Int J Mol Sci. 2020;21(21):8118. https://doi.org/10.3390/ijms21218118 .
doi: 10.3390/ijms21218118
pubmed: 33143256
pmcid: 7663258
Rocha EAV. Fifty years of coronary artery bypass graft surgery. Braz J Cardiovasc Surg. 2017;32(4):II–III. https://doi.org/10.21470/1678-9741-2017-0104 .
doi: 10.21470/1678-9741-2017-0104
pubmed: 28977193
pmcid: 5613722
Adelborg K, Horváth-Puhó E, Schmidt M, et al. Thirty-year mortality after coronary artery bypass graft surgery: a danish nationwide population-based cohort study. Circ Cardiovasc Qual Outcomes. 2017;10(5):e002708. https://doi.org/10.1161/CIRCOUTCOMES.116.002708 .
doi: 10.1161/CIRCOUTCOMES.116.002708
pubmed: 28500223
Safaie N, Montazerghaem H, Jodati A, Maghamipour N. In-hospital complications of coronary artery bypass graft surgery in patients older than 70 years. J Cardiovasc Thorac Res. 2015;7(2):60–2. https://doi.org/10.15171/jcvtr.2015.13 .
doi: 10.15171/jcvtr.2015.13
pubmed: 26191393
pmcid: 4492179
Steadman J, Catalani B, Sharp C, Cooper L. Life-threatening perioperative anesthetic complications: major issues surrounding perioperative morbidity and mortality. Trauma Surg Acute Care Open. 2017;2(1):e000113. https://doi.org/10.1136/tsaco-2017-000113 .
doi: 10.1136/tsaco-2017-000113
pubmed: 29766107
pmcid: 5887586
Glance LG, OslerTM, Mukamel DB, Dick AW. Effect of complications on mortality after coronary artery bypass grafting surgery: evidence from New York State. J Thorac Cardiovasc Surg. 2007;134(1):53–8. https://doi.org/10.1016/j.jtcvs.2007.02.037 .
doi: 10.1016/j.jtcvs.2007.02.037
pubmed: 17599486
Meng F, Ma J, Wang W, et al. Meta-analysis of interleukin 6, 8, and 10 between off-pump and on-pump coronary artery bypass groups. Bosn J Basic Med Sci. 2017;17(2):85–94. https://doi.org/10.17305/bjbms.2017.1505 .
doi: 10.17305/bjbms.2017.1505
pubmed: 28284177
pmcid: 5474113
Puchinger J, Ryz S, Nixdorf L, et al. Characteristics of interleukin-6 signaling in elective cardiac surgery-a prospective cohort study. J Clin Med. 2022;11(3):590. https://doi.org/10.3390/jcm11030590 .
doi: 10.3390/jcm11030590
pubmed: 35160042
pmcid: 8836792
Lisowska B, Jakubiak J, Siewruk K, Sady M, Kosson D. Which idea is better with regard to immune response? Opioid anesthesia or opioid free anesthesia. J Inflamm Res. 2020;13:859–69. https://doi.org/10.2147/JIR.S275986 .
doi: 10.2147/JIR.S275986
pubmed: 33177861
pmcid: 7652233
Wahba A, Milojevic M, Boer C, De Somer FMJJ, Gudbjartsson T, van den Goor J, Jones TJ, Lomivorotov V, Merkle F, Ranucci M, Kunst G, Puis L, EACTS/EACTA/EBCP Committee Reviewers. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur J Cardiothorac Surg. 2020;57(2):210–51. https://doi.org/10.1093/ejcts/ezz267 .
doi: 10.1093/ejcts/ezz267
pubmed: 31576396
Algarni KD, Maganti M, Yau TM. Predictors of low cardiac output syndrome after isolated coronary artery bypass surgery: trends over 20 years. Ann Thorac Surg. 2011;92(5):1678–84. https://doi.org/10.1016/j.athoracsur.2011.06.017 .
doi: 10.1016/j.athoracsur.2011.06.017
pubmed: 21939957
Viechtbauer W, Smits L, Kotz D, Budé L, Spigt M, Serroyen J, Crutzen R. A simple formula for the calculation of sample size in pilot studies. J Clin Epidemiol. 2015;68(11):1375–9. https://doi.org/10.1016/j.jclinepi.2015.04.014 .
doi: 10.1016/j.jclinepi.2015.04.014
pubmed: 26146089
Aguerreche C, Cadier G, Beurton A, et al. Feasibility and postoperative opioid sparing effect of an opioid-free anesthesia in adult cardiac surgery: a retrospective study. BMC Anesthesiol. 2021;21(1):166. https://doi.org/10.1186/s12871-021-01362-1 .
doi: 10.1186/s12871-021-01362-1
pubmed: 34082712
pmcid: 8173983
Kanaya N, Zakhary DR, Murray PA, et al. Differential effects of fentanyl and morphine on intracellular Ca2 + transients and contraction in rat ventricular myocytes. Anesthesiology. 1998;89(6):1532–42. https://doi.org/10.1097/00000542-199812000-00033 .
doi: 10.1097/00000542-199812000-00033
pubmed: 9856730
Crystal GJ. Carbon dioxide and the heart: physiology and clinical implications. Anesth Analg. 2015;121(3):610–23. https://doi.org/10.1213/ANE.0000000000000820 .
doi: 10.1213/ANE.0000000000000820
pubmed: 26287294
Kwanten LE, O’Brien B, Anwar S. Opioid-based anesthesia and analgesia for adult cardiac surgery: history and narrative review of the literature. J Cardiothorac Vasc Anesth. 2019;33(3):808–16. https://doi.org/10.1053/j.jvca.2018.05.053 .
doi: 10.1053/j.jvca.2018.05.053
pubmed: 30064852
Brown EN, Pavone KJ, Naranjo M. Multimodal general anesthesia: theory and practice. Anesth Analg. 2018;127(5):1246–58. https://doi.org/10.1213/ANE.0000000000003668 .
doi: 10.1213/ANE.0000000000003668
pubmed: 30252709
pmcid: 6203428
Mulier J. Opioid free general anesthesia: a paradigm shift? Rev Esp Anestesiol Reanim. 2017;64(8):427–30. https://doi.org/10.1016/j.redar.2017.03.004 . English, Spanish.
doi: 10.1016/j.redar.2017.03.004
pubmed: 28431750
Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci. 2011;34:601–28. https://doi.org/10.1146/annurev-neuro-060909-153200 .
doi: 10.1146/annurev-neuro-060909-153200
pubmed: 21513454
pmcid: 3390788
Rong LQ, Kamel MK, Rahouma M, Naik A, Mehta K, Abouarab AA, Di Franco A, Demetres M, Mustapich TL, Fitzgerald MM, Pryor KO, Gaudino M. High-dose versus low-dose opioid anesthesia in adult cardiac surgery: a meta-analysis. J Clin Anesth. 2019;57:57–62. https://doi.org/10.1016/j.jclinane.2019.03.009 .
doi: 10.1016/j.jclinane.2019.03.009
pubmed: 30870677
Schoonen A, van Klei WA, van Wolfswinkel L, van Loon K. Definitions of low cardiac output syndrome after cardiac surgery and their effect on the incidence of intraoperative LCOS: a literature review and cohort study. Front Cardiovasc Med. 2022;9:926957. https://doi.org/10.3389/fcvm.2022.926957 .
doi: 10.3389/fcvm.2022.926957
pubmed: 36247457
pmcid: 9558721
Pérez Vela JL, Jiménez Rivera JJ, Alcalá Llorente MÁ, González de Marcos B, Torrado H, García Laborda C, Fernández Zamora MD, González Fernández FJ. Martín Benítez JC; en representación del Grupo ESBAGA. Low cardiac output syndrome in the postoperative period of cardiac surgery. Profile, differences in clinical course and prognosis. The ESBAGA study. Med Intensiva (Engl Ed). 2018;42(3):159–67. https://doi.org/10.1016/j.medin.2017.05.009 . English, Spanish.
doi: 10.1016/j.medin.2017.05.009
pubmed: 28736085
Patti G, Chello M, Candura D, Pasceri V, D’Ambrosio A, Covino E, et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (atorvastatin for reduction of myocardial dysrhythmia after cardiac surgery) study. Circulation. 2006;114:1455–61. https://doi.org/10.1161/CIRCULATIONAHA.106.621763 .
doi: 10.1161/CIRCULATIONAHA.106.621763
pubmed: 17000910
Alqahtani AA. Atrial fibrillation post cardiac surgery trends toward management. Heart Views. 2010;11:57–63. https://doi.org/10.4103/1995-705X.73212 .
doi: 10.4103/1995-705X.73212
pubmed: 21187998
pmcid: 3000913
Sheu SS, Leader WJ. Lidocaine’s negative inotropic and anti-arrhythmic actions. Dependence on shortening of action potential duration and reduction of intracellular sodium activity. Circ Res. 1985;57(4):578–90. https://doi.org/10.1161/01.res.57.4.578 .
doi: 10.1161/01.res.57.4.578
pubmed: 2412723
Hayashi Y, Sumikawa K, Maze M, et al. Dexmedetomidine prevents epinephrine-induced arrhythmias through stimulation of central alpha 2 adrenoceptors in halothane-anesthetized dogs. Anesthesiology. 1991;75(1):113–7. https://doi.org/10.1097/00000542-199107000-00018 .
doi: 10.1097/00000542-199107000-00018
pubmed: 1676567
Cusack B, Buggy DJ. Anesthesia, analgesia, and the surgical stress response. BJA Educ. 2020;20(9):321–8. https://doi.org/10.1016/j.bjae.2020.04.006 .
doi: 10.1016/j.bjae.2020.04.006
pubmed: 33456967
pmcid: 7807970
Bacchiega BC, Bacchiega AB, Usnayo MJ, et al. Interleukin 6 inhibition and coronary artery disease in a high-risk population: a prospective community-based clinical study. J Am Heart Assoc. 2017;6(3):e005038. https://doi.org/10.1161/JAHA.116.005038 .
doi: 10.1161/JAHA.116.005038
pubmed: 28288972
pmcid: 5524026
Yang S, Zheng R, Hu S, et al. Mechanism of cardiac depression after trauma-hemorrhage: increased cardiomyocyte IL-6 and effect of sex steroids on IL-6 regulation and cardiac function. Am J Physiol Heart Circ Physiol. 2004;287(5):H2183–91. https://doi.org/10.1152/ajpheart.00624.2003 .
doi: 10.1152/ajpheart.00624.2003
pubmed: 15475534
Kaireviciute D, Blann AD, Balakrishnan B, et al. Characterization and validity of inflammatory biomarkers in the prediction of postoperative atrial fibrillation in coronary artery disease patients. Thromb Haemost. 2010;104(1):122–7. https://doi.org/10.1160/TH09-12-0837 .
doi: 10.1160/TH09-12-0837
pubmed: 20458440
Ucar HI, Tok M, Atalar E, et al. Predictive significance of plasma levels of interleukin-6 and high-sensitivity c-reactive protein in atrial fibrillation after coronary artery bypass surgery. Heart Surg Forum. 2007;10(2):E131–135. https://doi.org/10.1532/HSF98.20061175 .
doi: 10.1532/HSF98.20061175
pubmed: 17597037
Bauer A, Korten I, Juchem G, et al. Euro score and IL-6 predict the course in ICU after cardiac surgery. Eur J Med Res. 2021;26(1):29. https://doi.org/10.1186/s40001-021-00501-1 .
doi: 10.1186/s40001-021-00501-1
pubmed: 33771227
pmcid: 7995398
Taylor NM, Lacoumenta S, Hall GM. Fentanyl and the interleukin-6 response to surgery. Anaesthesia. 1997;52(2):112–5. https://doi.org/10.1111/j.1365-2044.1997.65-az0063.x .
doi: 10.1111/j.1365-2044.1997.65-az0063.x
pubmed: 9059091
Beilin B, Rusabrov Y, Shapira Y, et al. Low-dose ketamine affects immune responses in humans during the early postoperative period. Br J Anaesth. 2007;99(4):522–7. https://doi.org/10.1093/bja/aem218 .
doi: 10.1093/bja/aem218
pubmed: 17681970
Roytblat L, Roy-Shapira A, Geemberg L, et al. Preoperative low dose ketamine reduces serum interleukin-6 response after abdominal hysterectomy. Pain Clin. 1996;9:327–34.
Yardeni IZ, Beilin B, Mayburd E. The effect of perioperative intravenous lidocaine on postoperative pain and immune function. Anesth Analg. 2009;109(5):1464–9. https://doi.org/10.1213/ANE.0b013e3181bab1bd .
doi: 10.1213/ANE.0b013e3181bab1bd
pubmed: 19843784
Ueshima H, Inada T, Shingu K. Suppression of phagosome proteolysis and Matrigel migration with the α2-adrenergic receptor agonist dexmedetomidine in murine dendritic cells. Immunopharmacol Immunotoxicol. 2013;35(5):558–66. https://doi.org/10.3109/08923973.2013.822509 .
doi: 10.3109/08923973.2013.822509
pubmed: 23927488
Chen G, Le Y, Zhou L, Gong L, Li X, Li Y, Liao Q, Duan K, Tong J, Ouyang W. Dexmedetomidine inhibits maturation and function of human cord blood-derived dendritic cells by interfering with synthesis and secretion of IL-12 and IL-23. PLoS ONE. 2016;11(4):e0153288. https://doi.org/10.1371/journal.pone.0153288 .
doi: 10.1371/journal.pone.0153288
pubmed: 27054340
pmcid: 4824534
Ariyaratnam P, Cale A, Loubani M, Cowen ME. Intermittent Cross-Clamp Fibrillation Versus Cardioplegic arrest during coronary surgery in 6,680 patients: a contemporary review of an historical technique. J Cardiothorac Vasc Anesth. 2019;33(12):3331–9. https://doi.org/10.1053/j.jvca.2019.07.126 .
doi: 10.1053/j.jvca.2019.07.126
pubmed: 31401206
Drennan SE, Burge KY, Szyld EG, Eckert JV, Mir AM, Gormley AK, Schwartz RM, Daves SM, Thompson JL, Burkhart HM, Chaaban H. Clinical and Laboratory Predictors for the development of low Cardiac output syndrome in Infants undergoing cardiopulmonary bypass: a pilot study. J Clin Med. 2021;10(4):712. https://doi.org/10.3390/jcm10040712 .
doi: 10.3390/jcm10040712
pubmed: 33670210
pmcid: 7916966
Liu Y, Wu F, Wu Y, Elliott M, Zhou W, Deng Y, Ren D, Zhao H. Mechanism of IL-6-related spontaneous atrial fibrillation after coronary artery grafting surgery: IL-6 knockout mouse study and human observation. Transl Res. 2021;233:16–31. https://doi.org/10.1016/j.trsl.2021.01.007 .
doi: 10.1016/j.trsl.2021.01.007
pubmed: 33465490
Su JH, Luo MY, Liang N, Gong SX, Chen W, Huang WQ, Tian Y, Wang AP. Interleukin-6: a Novel Target for Cardio-Cerebrovascular Diseases. Front Pharmacol. 2021;12:745061. https://doi.org/10.3389/fphar.2021.745061 .
doi: 10.3389/fphar.2021.745061
pubmed: 34504432
pmcid: 8421530