Biochemical and gene expression alterations due to individual exposure of atrazine, dichlorvos, and imidacloprid and their combination in zebrafish.


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 04 03 2023
accepted: 25 09 2023
medline: 7 12 2023
pubmed: 12 10 2023
entrez: 11 10 2023
Statut: ppublish

Résumé

In environmental toxicology, combined toxicity has emerged as an important concern. Atrazine (ATZ), dichlorvos (DIC), and imidacloprid (IMD) are the major pesticides, extensively used to control insect, flies, mosquitoes, and weed. Here, we investigate whether the exposure to three different types of pesticides individually and in combination for 24 h alters antioxidant enzyme responses in zebrafish (Danio rerio). Oxidative stress parameters (biochemical and mRNA expression), acetylcholinesterase (AChE) activity, and Metallothionein-II (MT-II) mRNA expression levels were measured. Present work includes toxicological assessment of individual and combined (CMD) exposure of ATZ (185.4 µM), DIC (181 µM), IMD (97.8 µ), and CMD (ATZ 92.7 µM + DIC 90.5 µM + IMD 48.9 µM), in the liver, kidney, and brain of adult zebrafish. Lipid peroxidation (LPO), glutathione (GSH) content, AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity along with mRNA expression of SOD, CAT, GPx, and MT-II were evaluated. Briefly, LPO, GSH content, the activity of AChE, and all antioxidant enzymes enhanced significantly in individual exposure, which was further altered in the CMD group. The mRNA expression of SOD, CAT, GPx, and MT-II in the liver and kidney showed significant down-regulation in all exposed groups. In the brain, significant upregulation in mRNA expression of SOD, CAT, GPx, and MT-II was observed in DIC and IMD groups, while ATZ and CMD showed significant downregulation except for GPx. Findings postulate that the CMD group exhibits synergistic toxic manifestation. The present study provides the baseline data on the combined toxic effects of pesticides and suggests regulating the use of pesticides.

Identifiants

pubmed: 37821735
doi: 10.1007/s11356-023-30160-0
pii: 10.1007/s11356-023-30160-0
doi:

Substances chimiques

Atrazine QJA9M5H4IM
Antioxidants 0
imidacloprid 3BN7M937V8
Dichlorvos 7U370BPS14
Acetylcholinesterase EC 3.1.1.7
Water Pollutants, Chemical 0
Catalase EC 1.11.1.6
Glutathione GAN16C9B8O
Superoxide Dismutase EC 1.15.1.1
Pesticides 0
RNA, Messenger 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

118291-118303

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abarikwu SO, Queen CD, Rex-Clovis CN et al (2017) Effects of co-exposure to atrazine and ethanol on the oxidative damage of kidney and liver in Wistar rats. Ren Fail 39:588–596. https://doi.org/10.1080/0886022X.2017.1351373
doi: 10.1080/0886022X.2017.1351373
Agarwal R, Raisuddin S, Tewari S et al (2010) Evaluation of comparative effect of pre-and post treatment of selenium on mercury-induced oxidative stress, histological alterations, and metallothionein mRNA expression in rats. J Biochem Mol Toxicol 24:123–135. https://doi.org/10.1002/jbt.20320
doi: 10.1002/jbt.20320
Ahmad M, Riaz U, Iqbal S, Ahmad J, Rasheed H, Al-Farraj ASF, Al-Wabel MI (2022) Adsorptive Removal of Atrazine From Contaminated Water Using Low-Cost Carbonaceous Materials: A Review. Frontiers in Materials 9:909534. https://doi.org/10.3389/fmats.2022.909534
doi: 10.3389/fmats.2022.909534
Ahmed YH, AbuBakr HO, Ahmad IM et al (2022) Histopathological, immunohistochemical, and molecular alterations in brain tissue and submandibular salivary gland of atrazine-induced toxicity in male rats. Environ Sci Pollut Res 29:30697–30711. https://doi.org/10.1007/s11356-021-18399-x
doi: 10.1007/s11356-021-18399-x
Al-Sawafi AG, Yan Y (2013) Bioconcentration and antioxidant status responses in zebrafish (Danio Rerio) under atrazine exposure. Intl J Chem Engg Appli 4:204–208. https://doi.org/10.7763/IJCEA.2013.V4.295
doi: 10.7763/IJCEA.2013.V4.295
APHA (2005) Standard methods for the examination of water and waste water, 21st edn. American Public Health Association, Washington, DC
Assis CR, Amaral IP, Castro PF et al (2007) Effect of dichlorvos on the acetylcholinesterase from tambaqui (Colossoma macropomum) brain. Environ Toxicol Chem 7:1451–1453. https://doi.org/10.1897/06-488R1.1
doi: 10.1897/06-488R1.1
Azpiazu C, Bosch J, Bortollotti L et al (2021) Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Sci Rep 11:6521. https://doi.org/10.1038/s41598-021-86036-1
doi: 10.1038/s41598-021-86036-1
Bacchetta C, Andrea R, Analia A, Mirta C, Maria JP, Jimena C (2014) Combined toxicological effects of pesticides: a fish multi-biomarker approach. Ecol Indic 36:532–538. https://doi.org/10.1016/j.ecolind.2013.09.016
doi: 10.1016/j.ecolind.2013.09.016
Barata C, Baird DJ, Nogueira AJ et al (2006) Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna straus. Implications for multi-substance risks assessment. Aquat Toxicol 78:1–14. https://doi.org/10.1016/j.aquatox.2006.01.013
doi: 10.1016/j.aquatox.2006.01.013
Benli PP, Çelik M (2021) In vivo effects of neonicotinoid-sulfoximine insecticide sulfoxaflor on acetylcholinesterase activity in the tissues of zebrafish (Danio rerio). Toxics 9:73. https://doi.org/10.3390/toxics9040073
doi: 10.3390/toxics9040073
Blahova J, Plhalova L, Hostovsky M et al (2013) Oxidative stress responses in zebrafish (Danio rerio) after subchronic exposure to atrazine. Food Chem Toxicol 61:82–85. https://doi.org/10.1016/j.fct.2013.02.041
doi: 10.1016/j.fct.2013.02.041
Bui-Nguyen TM, Baer CE, Lewis JA et al (2015) Dichlorvos exposure results in large scale disruption of energy metabolism in the liver of the zebrafish, (Danio rerio). BMC Genom 16:853. https://doi.org/10.1186/s12864-015-1941-2
doi: 10.1186/s12864-015-1941-2
Celik I, Suzek H (2009) Effects of sub acute exposure of dichlorvos at sublethal dosages on erythrocytes and tissue antioxidant defense systems and lipid peroxidation in rats. Ecotoxicol Environ Saf 72:905–908. https://doi.org/10.1016/j.ecoenv.2008.04.007
doi: 10.1016/j.ecoenv.2008.04.007
Ceyhun SB, Ercument A, Birsen K, Kubra A, Orhan E (2012) Chronic toxicity of pesticides to the mRNA expression levels of metallothioneins and cytochrome P450 1A genes in rainbow trout. Toxicol Ind Health 162–169. https://doi.org/10.1177/074823371140948
Chen Y, Maret W (2001) Catalytic selenols couple the redox cycles of metallothionein and glutathione. Eur J Biochem 268:3346–3353. https://doi.org/10.1046/j.1432-1327.2001.02250.x
doi: 10.1046/j.1432-1327.2001.02250.x
Covert SA, Megan ES, Sarah MS, Wesley WS (2020) Pesticide mixtures show potential toxicity to aquatic life in U.S. streams, water years 2013–2017. Sci Total Environ 745:141285. https://doi.org/10.1016/j.scitotenv.2020.141285
doi: 10.1016/j.scitotenv.2020.141285
Demirci O, Guven K, Asma D, Oqut S, Ugurlu P (2018) Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammaru kischineffensis. Ecotoxicol Environ Saf 147:749–758. https://doi.org/10.1016/j.ecoenv.2017.09.038
doi: 10.1016/j.ecoenv.2017.09.038
El-Gendy KS, Aly NM, Mahmoud FH, Kenawy A, El-Sebae AK (2010) The role of vitamin C as antioxidant in protection of oxidative stress induced by imidacloprid. Food Chem Toxicol 48:215–221. https://doi.org/10.1016/j.fct.2009.10.003
doi: 10.1016/j.fct.2009.10.003
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6
doi: 10.1016/0003-9861(59)90090-6
Ellman GL, Courtney KD, Andres VJR, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9
doi: 10.1016/0006-2952(61)90145-9
Erdogan O, Saltuk BC, Deniz E, Ercument A (2011) Impact of deltamethrin exposure on mRNA expression levels of metallothionein A, B and cytochrome P450 1A in rainbow trout muscles. Gene 484:13–17. https://doi.org/10.1016/j.gene.2011.05.026
doi: 10.1016/j.gene.2011.05.026
Falfushynska H, Khatib I, Kasianchuk N et al (2022) Toxic effects and mechanisms of common pesticides (Roundup and chlorpyrifos) and their mixtures in a zebrafish model (Danio rerio). Sci Total Environ 833:155236. https://doi.org/10.1016/j.scitotenv.2022.155236
doi: 10.1016/j.scitotenv.2022.155236
Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Meth Enzymol 105:114–121. https://doi.org/10.1016/S0076-6879(84)05015-1
doi: 10.1016/S0076-6879(84)05015-1
Ge W, Yan S, Wang J et al (2015) Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J Agric Food Chem 63:1856–1862. https://doi.org/10.1021/jf504895h
doi: 10.1021/jf504895h
Ghosh PK, Philip L (2006) Environmental significance of atrazine in aqueous systems and its removal by biological processes. Global NEST J 8:159–178
Guerra LJ, Amaral AMB, Quadros VA et al (2021) Biochemical and behavioral responses in zebrafish exposed to imidacloprid oxidative damage and antioxidant responses. Arch Environ Contam Toxicol 81:255–264. https://doi.org/10.1007/s00244-021-00865-9
doi: 10.1007/s00244-021-00865-9
Gultekin F, Deliba SN, Yasar S, Kilinc I (2001) In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos-ethyl in rats. Arch Toxicol 75:88–96. https://doi.org/10.1007/s002040100219
doi: 10.1007/s002040100219
Guo-Ping Z, Fang-Wei Y, Jin-Wang L, Han-Zhu X, Fa-Zheng R, Guo-Fang P, Yi-Xuan L (2020) Toxicities of neonicotinoid-containing pesticide mixtures on nontarget organisms. Environ Tox Chem 39:1884–1893. https://doi.org/10.1002/etc.4842
doi: 10.1002/etc.4842
Jhamtani RC, Shukla S, Dahiya MS, Agarwal R (2018) Impact of co-exposure of aldrin and titanium dioxide nanoparticles at biochemical and molecular levels in zebrafish. Environ Toxicol Pharmacol 58:141–155. https://doi.org/10.1016/j.etap.2017.12.021
doi: 10.1016/j.etap.2017.12.021
Jin Y, Zhang X, Shu L et al (2010) Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 78:846–852. https://doi.org/10.1016/j.chemosphere.2009.11.044
doi: 10.1016/j.chemosphere.2009.11.044
Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132
Kapoor U, Srivastava MK, Bhardwaj S, Srivastava LP (2010) Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive its no observed effect level (NOEL). J Toxicol Sci 35:577–581. https://doi.org/10.2131/jts.35.577
doi: 10.2131/jts.35.577
Karaca M, Varışlı L, Korkmaz K, Ozaydın O, Percin F, Orhan H (2014) Organochlorine pesticides and antioxidant enzymes are inversely correlated with liver enzyme gene expression in Cyprinus carpio. Toxicol Lett 230:198–207. https://doi.org/10.1016/j.toxlet.2014.02.013
doi: 10.1016/j.toxlet.2014.02.013
Khaled AO, Mahmoud MIS, Ahmed NS (2023) Biomarkers of imidacloprid toxicity in Japanese quail, Coturnix coturnix Japonica. Environ Sci Pollut Res 30:5662–5676. https://doi.org/10.1007/s11356-022-22580-1
doi: 10.1007/s11356-022-22580-1
Kim K, Hwang-Ju J, Sung-Deuk C et al (2018) Combined toxicity of endosulfan and phenanthrene mixtures and induced molecular changes in adult Zebrafish (Danio rerio). Chemosphere 194:30–41. https://doi.org/10.1016/j.chemosphere.2017.11.128
doi: 10.1016/j.chemosphere.2017.11.128
Kruć-Fijałkowska R, Dragon K, Drożdżyński D, Górski J (2022) Seasonal variation of pesticides in surface water and drinking water wells in the annual cycle in western Poland, and potential health risk assessment. Sci Rep 12:3317. https://doi.org/10.1038/s41598-022-07385-z
doi: 10.1038/s41598-022-07385-z
Li W, Wang B, Yuan Y, Wang S (2023) Spatiotemporal distribution patterns and ecological risk of multi-pesticide residues in the surface water of a typical agriculture area in China. Environ Monit Assess 870:161872. https://doi.org/10.1016/j.scitotenv.2023.161872
doi: 10.1016/j.scitotenv.2023.161872
Lionetto MG, Caricato R, Giordano ME et al (2003) Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull 46:324–330. https://doi.org/10.1016/S0025-326X(02)00403-4
doi: 10.1016/S0025-326X(02)00403-4
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
doi: 10.1016/S0021-9258(19)52451-6
Mai H, Cachot J, Clérandeau C, Martin C, Mazzela N, Gonzalez P, Morin B (2020) An environmentally realistic pesticide and copper mixture impacts embryonic development and DNA integrity of the Pacific oyster, Crassostrea gigas. Environ Sci Pollut Res 27:3600–3611. https://doi.org/10.1007/s11356-018-3586-6
doi: 10.1007/s11356-018-3586-6
Mali H, Shah C, Raghunandan BH, Anil SP, Darshan P, Ujjval T, Subramanian RB (2023) Organophosphate pesticides an emerging environmental contaminant: pollution, toxicity, bioremediation progress, and remaining challenges. J Environ Sci 127:234–250. https://doi.org/10.1016/j.jes.2022.04.023
doi: 10.1016/j.jes.2022.04.023
Mendonça-Soares S, Fortuna M, Freddo N et al (2023) Behavioral, biochemical, and endocrine responses of zebrafish to 30-min exposure with environmentally relevant concentrations of imidacloprid-based insecticide. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-27667-x
doi: 10.1007/s11356-023-27667-x
Moncaleano-Niño AM, Gómez-Cubillos MC, Luna-Acosta A et al (2022) Monitoring metallothionein-like protein concentrations and cholinesterase activity in tropical cup oysters as biomarkers of exposure to metals and pesticides in the southern Caribbean, Colombia. Environ Sci Pollut Res 29:52157–52183. https://doi.org/10.1007/s11356-021-17644-7
doi: 10.1007/s11356-021-17644-7
Nachimuthu KS, Ramasamy A, Murugesan T et al (2023) Toxicity analysis and biomarker response of quinalphos organophosphate insecticide (QOI) on eco-friendly exotic Eudrilus eugeniae earthworm. https://doi.org/10.1007/s10661-022-10834-x
Narasimhamurthy RK, Andrade D, Mumbrekar KD (2022) Modulation of CREB and its associated upstream signaling pathways in pesticide-induced neurotoxicity. Mol Cell Biochem 477:5. https://doi.org/10.1007/s11010-022-04472-7
doi: 10.1007/s11010-022-04472-7
Nele M, Stefan R, Michael T, Barbara G (2020) Mixture toxicity in the Erft River: assessment of ecological risks and toxicity drivers. Environ Sci Eur 32:51. https://doi.org/10.1186/s12302-020-00326-5
doi: 10.1186/s12302-020-00326-5
OECD (2004) OECD Guidelines for the Testing of Chemicals, Section 2. Effects on Biotic Systems. Organisation for Economic Co-operation and Development, Paris. www.oecd-ilibrary.org date of access 14 Jan 2022
Ogunro OB (2023) Redox-regulation and anti-inflammatory system activation by quercetin-3-O-β-Dglucopyranoside-rich fraction from Spondias mombin leaves: biochemical, reproductive and histological study in rat model of dichlorvos toxicity. RPS Pharmacy and Pharmacology Reports 2:2. https://doi.org/10.1093/rpsppr/rqad016
doi: 10.1093/rpsppr/rqad016
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Annu Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3
doi: 10.1016/0003-2697(79)90738-3
Ojha A, Yaduvanshi N, Srivastava N (2011) Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pestic Biochem Physiol 99:148–156. https://doi.org/10.1016/j.pestbp.2010.11.011
doi: 10.1016/j.pestbp.2010.11.011
Olwenn M, Martin S, Sibylle E et al (2021) Ten years of research on synergisms and antagonisms in chemical mixture: a systematic review and quantitative reappraisal of mixture studies. Environ Int 146:106206. https://doi.org/10.1016/j.envint.2020.106206
doi: 10.1016/j.envint.2020.106206
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45
doi: 10.1093/nar/29.9.e45
Rodríguez-Fuentes G, Rubio-Escalante FJ, Noreña-Barroso E, Escalante-Herrera KS, Schlenk D (2015) Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure. Comp Biochem Physiol C Toxicol Pharmacol 172–173:19–25. https://doi.org/10.1016/j.cbpc.2015.04.003
doi: 10.1016/j.cbpc.2015.04.003
Santos KC, Martinez CB (2014) Genotoxic and biochemical effects of atrazine and Roundup, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicol Environ Saf 100:7–14. https://doi.org/10.1016/j.ecoenv.2013.11.014
doi: 10.1016/j.ecoenv.2013.11.014
Satyanarayana GNV, Kumar A, Pandey AK, Sharma MT, Natesan M, Reddy MKM (2023) Evaluating chemicals of emerging concern in the Ganga River at the two major cities Prayagraj and Varanasi through validated analytical approaches. Environ Sci Pollut Res 30:1520–1539. https://doi.org/10.1007/s11356-022-22226-2
doi: 10.1007/s11356-022-22226-2
Selcuk O, Serdar A, Harun A (2018) Imidacloprid exposure cause the histopathological changes, activation of TNF-α, iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cyprinus carpio L). Toxicol Rep 5:125–133. https://doi.org/10.1016/j.toxrep.2017.12.019
doi: 10.1016/j.toxrep.2017.12.019
Shaner DL (2014) Herbicide handbook-atrazine, 10th edn. Weed Science Society of America, Lawrence, KS, pp 54–55
Shukla S, Jhamtani RC, Dahiya MS, Agarwal R (2017a) Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicol Rep 4:240–244. https://doi.org/10.1016/j.toxrep.2017.05.002
doi: 10.1016/j.toxrep.2017.05.002
Shukla S, Jhamtani RC, Dahiya MS, Agarwal R (2017) A novel method to achieve high yield of total RNA from zebrafish for expression studies. Int J Bioassay 6:5383–5385. https://doi.org/10.21746/ijbio.2017.05.004
doi: 10.21746/ijbio.2017.05.004
Shukla S, Jhamtani RC, Agarwal R (2018) Emergence of zebrafish as a biomarker for pesticide poisoning in forensic toxicology research. Toxicol Int 25:68–77. https://doi.org/10.18311/ti/2018/22803
doi: 10.18311/ti/2018/22803
Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. https://doi.org/10.1016/0003-2697(72)90132-7
doi: 10.1016/0003-2697(72)90132-7
Tao MT, Bian ZQ, Zhang J, Wang T, Shen HY (2020) Quantitative evaluation and the toxicity mechanism of synergism within three organophosphorus pesticide mixtures to Chlorella pyrenoidosa†. Environ Sci: Processes Impacts 22:2095–2103
Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268. https://doi.org/10.1146/annurev.pharmtox.45.120403.095930
doi: 10.1146/annurev.pharmtox.45.120403.095930
Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013
doi: 10.1016/j.ecoenv.2005.03.013
Van Leeuwen CJ, Bro-Rasmussen F, Feijtel TC et al (1996) Risk assessment and management of new and existing chemicals. Environ Toxicol Pharmacol 20:243–299. https://doi.org/10.1016/S1382-6689(96)00072-5
doi: 10.1016/S1382-6689(96)00072-5
Viana NP, da Silva LCM, Portruneli N et al (2022) Biocentration and toxicological impacts of fipronil and 2,4-D commercial formulations (single and mixture) in the tropical fish, Danio rerio. Environ Sci Pollut Res 29:11685–11698. https://doi.org/10.1007/s11356-021-16352-6
doi: 10.1007/s11356-021-16352-6
Wang Y, Lv L, Yu Y, Yang G, Xu Z, Wang Q, Cai L (2017) Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Denio rerio). Chemosphere 170:61–67. https://doi.org/10.1016/j.chemosphere.2016.12.025
doi: 10.1016/j.chemosphere.2016.12.025
Wu S, Xinfang L, Xinju L, Guiling Y, Xuehua A, Qiang W, Yanhua W (2018) Joint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio). Environ Pollut 235:470–481. https://doi.org/10.1016/j.envpol.2017.12.120
doi: 10.1016/j.envpol.2017.12.120
Yanhua W, Lu L, Chao X, Dou W, Guiling Y, Xinquan W, Hongbiao W, Qiang W (2021) Mixture toxicity of thiophanate-methyl and fenvalerate to embryonic zebrafish (Danio rerio) and its underlying mechanism. Sci Total Environ 756:143754. https://doi.org/10.1016/j.scitotenv.2020.143754
doi: 10.1016/j.scitotenv.2020.143754
Zhu LS, Shao B, Song Y, Xie H, Wang JH, Liu W, Hou XX (2011) DNA damage and effects on antioxidative enzymes in zebra fish (Danio rerio) induced by atrazine. Toxicol Mech Meth 21:31–36. https://doi.org/10.3109/15376516.2010.529186
doi: 10.3109/15376516.2010.529186

Auteurs

Saurabh Shukla (S)

Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India.
Department of Forensic Science, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, 144411, India.

Reena C Jhamtani (RC)

Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India.
School of Forensic Science, Centurion University of Technology and Management, 752050, Bhubhaneshwar, Orrisa, India.

Rakhi Agarwal (R)

Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India. rakhi.agarwal@nfsu.ac.in.
National Forensic Sciences University, Delhi Campus, Delhi, 110085, India. rakhi.agarwal@nfsu.ac.in.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH