Enhanced adsorption for trivalent antimony by nano-zero-valent iron-loaded biochar: performance, mechanism, and sustainability.
Modified biochar
Nano-zero-valent iron
Removal mechanism
Trivalent antimony
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
23
06
2023
accepted:
02
10
2023
medline:
15
11
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
ppublish
Résumé
The discharge of tailing leachate and metallurgical wastewater has led to an increasing trend of water pollution. In this study, nZVI-modified low-temperature biochar was used to adsorb Sb(III) from water. The adsorption capacity and speed of nZVI-BC were better than those of BC, and the best adsorption effect was observed for 4nZVI-BC, with 93.60 mg·g
Identifiants
pubmed: 37831269
doi: 10.1007/s11356-023-30299-w
pii: 10.1007/s11356-023-30299-w
doi:
Substances chimiques
Iron
E1UOL152H7
biochar
0
Antimony
9IT35J3UV3
Water Pollutants, Chemical
0
Charcoal
16291-96-6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
112536-112547Subventions
Organisme : National Natural Science Foundation of China
ID : 41062007
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Arnold M, Kangas P, Maekinen A, Lakay E, Isomaeki N, Laven G, Gericke M, Pajuniemi P, Kaartinen T, Wendling L (2019) Mine water as a resource: selective removal and recovery of trace antimony from mine-impacted water. Mine Water Environ 38:431–446. https://doi.org/10.1007/s10230-019-00597-2
doi: 10.1007/s10230-019-00597-2
Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11. https://doi.org/10.1155/2017/3039817
doi: 10.1155/2017/3039817
Bergmann MEH, Koparal AS (2011) Electrochemical antimony removal from accumulator acid: results from removal trials in laboratory cells. J Hazard Mater 196:59–65. https://doi.org/10.1016/j.jhazmat.2011.08.073
doi: 10.1016/j.jhazmat.2011.08.073
Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B, Wijesekara H, Diyabalanage S, Sooriyakumar P, Vinu A, Wang H, Kirkham MB, Shaheen SM, Rinklebe J, Siddique KHM (2022) Antimony contamination and its risk management in complex environmental settings: a review. Environ Int 158:1–20. https://doi.org/10.1016/j.envint.2021.106908
doi: 10.1016/j.envint.2021.106908
Calugaru IL, Neculita CM, Genty T, Zagury GJ (2019) Removal efficiency of As(V) and Sb(III) in contaminated neutral drainage by Fe-loaded biochar. Environ Sci Pollut Res Int 26:9322–9332. https://doi.org/10.1007/s11356-019-04381-1
doi: 10.1007/s11356-019-04381-1
Chen Z, Liu T, Tang J, Zheng Z, Wang H, Shao Q, Chen G, Li Z, Chen Y, Zhu J, Feng T (2018) Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environ Sci Pollut Res Int 25:11854–11866. https://doi.org/10.1007/s11356-018-1460-1
doi: 10.1007/s11356-018-1460-1
Chi Z, Zhu Y, Liu W, Huang H, Li H (2021) Selective removal of As(III) using magnetic graphene oxide ion-imprinted polymer in porous media: potential effect of external magnetic field. J Environ Chem Eng 9:1–10. https://doi.org/10.1016/j.jece.2021.105671
doi: 10.1016/j.jece.2021.105671
Cui L, Fan Q, Sun J, Quan G, Yan J, Hina K, Wang H, Zhang Z, Hussain Q (2021) Changes in surface characteristics and adsorption properties of 2,4,6-trichlorophenol following Fenton-like aging of biochar. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-82129-z
doi: 10.1038/s41598-021-82129-z
Desta MB (2013) Batch sorption experiments: Langmuir and Freundlich Isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) Agricultural Waste. Journal of Thermodynamics 2013:1–6. https://doi.org/10.1155/2013/375830
doi: 10.1155/2013/375830
Diquattro S, Castaldi P, Ritch S, Juhasz AL, Brunetti G, Scheckel KG, Garau G, Lombi E (2021) Insights into the fate of antimony (Sb) in contaminated soils: ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. Sci Total Environ 770:1–10. https://doi.org/10.1016/j.scitotenv.2021.145354
doi: 10.1016/j.scitotenv.2021.145354
Du X, Qu F, Liang H, Li K, Yu H, Bai L, Li G (2014) Removal of antimony (III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process. Chem Eng J 254:293–301. https://doi.org/10.1016/j.cej.2014.05.126
doi: 10.1016/j.cej.2014.05.126
Galdames A, Ruiz-Rubio L, Orueta M, Sanchez-Arzalluz M, Luis Vilas-Vilela J (2020) Zero-valent iron nanoparticles for soil and groundwater remediation. Int J Environ Res Public Health 17:1–22. https://doi.org/10.3390/ijerph17165817
doi: 10.3390/ijerph17165817
Guo X, Wu Z, He M (2009) Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS). Water Res 43:4327–4335. https://doi.org/10.1016/j.watres.2009.06.033
doi: 10.1016/j.watres.2009.06.033
Guo X, Wu Z, He M, Meng X, Jin X, Qiu N, Zhang J (2014) Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. J Hazard Mater 276:339–345. https://doi.org/10.1016/j.jhazmat.2014.05.025
doi: 10.1016/j.jhazmat.2014.05.025
Guo W, Fu Z, Wang H, Liu S, Wu F, Giesy JP (2018) Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms. Sci Total Environ 644:1277–1285. https://doi.org/10.1016/j.scitotenv.2018.07.034
doi: 10.1016/j.scitotenv.2018.07.034
Guo W, Fu Z, Wang H, Song F, Wu F, Giesy JP (2018) Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan. China Microchem J 137:181–189. https://doi.org/10.1016/j.microc.2017.10.010
doi: 10.1016/j.microc.2017.10.010
Hao C, Liu M, Peng Y, Wei Z (2022) Comparison of antimony sources and hydrogeochemical processes in shallow and deep groundwater near the Xikuangshan Mine, Hunan Province. China Mine Water Environ 41:194–209. https://doi.org/10.1007/s10230-021-00833-8
doi: 10.1007/s10230-021-00833-8
He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, Wang A, Wang Y, Pervaiz A, Shan J (2019) Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects. J Environ Sci 75:14–39. https://doi.org/10.1016/j.jes.2018.05.023
doi: 10.1016/j.jes.2018.05.023
Husein DZ, Hassanien R, Al-Hakkani MF (2019) Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon 5:1–9. https://doi.org/10.1016/j.heliyon.2019.e02339
doi: 10.1016/j.heliyon.2019.e02339
Inbaraj BS, Wang JS, Lu JF, Siao FY, Chen BH (2009) Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gamma-glutamic acid). Bioresour Technol 100:200–207. https://doi.org/10.1016/j.biortech.2008.05.014
doi: 10.1016/j.biortech.2008.05.014
Jani NA, Haddad L, Abdulhameed AS, Jawad AH, Alothman ZA, Yaseen ZM (2022) Modeling and optimization of the adsorptive removal of crystal violet dye by durian (Durio zibethinus) seeds powder: insight into kinetic, isotherm, thermodynamic, and adsorption mechanism. Biomass Convers Biorefin 1–14. https://doi.org/10.1007/s13399-022-03319-x
Jasri K, Abdulhameed AS, Jawad AH, Alothman ZA, Yousef TA, Al Duaij OK (2023) Mesoporous activated carbon produced from mixed wastes of oil palm frond and palm kernel shell using microwave radiation-assisted K
doi: 10.1016/j.diamond.2022.109581
Jawad AH, Abdulhameed AS, Selvasembian R, Alothman ZA, Wilson LD (2022) Magnetic biohybrid chitosan-ethylene glycol diglycidyl ether/magnesium oxide/Fe
doi: 10.1007/s10965-022-03067-6
Jawad AH, Rangabhashiyam S, Abdulhameed AS, Syed-Hassan SSA, Alothman ZA, Wilson LD (2022) Process optimization and adsorptive mechanism for reactive blue 19 dye by magnetic crosslinked chitosan/MgO/Fe
doi: 10.1007/s10924-022-02382-9
Jawad AH, Saber SEM, Abdulhameed AS, Reghioua A, Alothman ZA, Wilson LD (2022) Mesoporous activated carbon from mangosteen (Garcinia mangostana) peels by H
doi: 10.1016/j.diamond.2022.109389
Jawad AH, Hameed BH, Abdulhameed AS (2023) Synthesis of biohybrid magnetic chitosan-polyvinyl alcohol/MgO nanocomposite blend for remazol brilliant blue R dye adsorption: solo and collective parametric optimization. Polym Bull 80:4927–4947. https://doi.org/10.1007/s00289-022-04294-z
doi: 10.1007/s00289-022-04294-z
Ji J, Xu S, Ma Z, Mou Y (2022) Optimisation of preparation conditions and removal mechanism for trivalent antimony by biochar-supported nano zero-valent iron. Environ Technol Innovation 26:1–9. https://doi.org/10.1016/j.eti.2021.102240
doi: 10.1016/j.eti.2021.102240
Ji J, Xu S, Ma Z, Mou Y (2022) Trivalent antimony removal using carbonaceous nanomaterial loaded with zero-valent bimetal (iron/copper) and their effect on seed growth. Chemosphere 296:1–9. https://doi.org/10.1016/j.chemosphere.2022.134047
doi: 10.1016/j.chemosphere.2022.134047
Ji J, Zhao T, Li F (2022) Remediation technology towards zero plastic pollution: recent advance and perspectives. Environ Pollut 313:1–12. https://doi.org/10.1016/j.envpol.2022.120166
doi: 10.1016/j.envpol.2022.120166
Jia X, Zhou J, Liu J, Liu P, Yu L, Wen B, Feng Y (2020) The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar. Sci Total Environ 724:1–9. https://doi.org/10.1016/j.scitotenv.2020.138158
doi: 10.1016/j.scitotenv.2020.138158
Jiang S-F, Ling L-L, Chen W-J, Liu W-J, Li D-C, Jiang H (2019) High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: mechanistic elucidation and quantification of the contributors. Chem Eng J 359:572–583. https://doi.org/10.1016/j.cej.2018.11.124
doi: 10.1016/j.cej.2018.11.124
Kacurakova M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydr Res 337:1145–1153. https://doi.org/10.1016/S0008-6215(02)00102-7
doi: 10.1016/S0008-6215(02)00102-7
Li J, Zheng B, He Y, Zhou Y, Chen X, Ruan S, Yang Y, Dai C, Tang L (2018) Antimony contamination, consequences and removal techniques: a review. Ecotoxicol Environ Saf 156:125–134. https://doi.org/10.1016/j.ecoenv.2018.03.024
doi: 10.1016/j.ecoenv.2018.03.024
Li Z, Wang L, Meng J, Liu X, Xu J, Wang F, Brookes P (2018) Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J Hazard Mater 344:1–11. https://doi.org/10.1016/j.jhazmat.2017.09.036
doi: 10.1016/j.jhazmat.2017.09.036
Liang J, Li X, Yu Z, Zeng G, Luo Y, Jiang L, Yang Z, Qian Y, Wu H (2017) Amorphous MnO
doi: 10.1021/acssuschemeng.7b00434
Ma Z, Xu S, Ji J, Peng G, Sun J (2021) Adsorption of Sb(III) in water by modified rice straw biochar. China Environ Sci 41:2706–2716. https://doi.org/10.19674/j.cnki.issn1000-6923.20201214.001
doi: 10.19674/j.cnki.issn1000-6923.20201214.001
Mosivand S, Monzon LMA, Kazeminezhad I, Kumar A, Coey JMD (2018) Pulsed electrochemical and electroless techniques for efficient removal of Sb and Pb from water. Environ Sci-Wat Res 4:2179–2190. https://doi.org/10.1039/c8ew00645h
doi: 10.1039/c8ew00645h
Pradhan S, Singh S, Rai LC (2007) Characterization of various functional groups present in the capsule of microcystis and study of their role in biosorption of Fe, Ni and Cr. Bioresour Technol 98:595–601. https://doi.org/10.1016/j.biortech.2006.02.041
doi: 10.1016/j.biortech.2006.02.041
Qiu Y, Xu X, Xu Z, Liang J, Yu Y, Cao X (2020) Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties. Chem Eng J 389:1–9. https://doi.org/10.1016/j.cej.2020.124471
doi: 10.1016/j.cej.2020.124471
Song X, Liu J, Jiang Q, Zhang P, Shao Y, He W, Feng Y (2019) Enhanced electron transfer and methane production from low-strength wastewater using a new granular activated carbon modified with nano-Fe
doi: 10.1016/j.cej.2019.05.216
Suhaimi A, Abdulhameed AS, Jawad AH, Yousef TA, Al Duaij OK, Alothman ZA, Wilson LD (2022) Production of large surface area activated carbon from a mixture of carrot juice pulp and pomegranate peel using microwave radiation-assisted ZnCl
doi: 10.1016/j.diamond.2022.109456
Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manage 151:326–342. https://doi.org/10.1016/j.jenvman.2014.12.051
doi: 10.1016/j.jenvman.2014.12.051
Wan S, Qiu L, Li Y, Sun J, Gao B, He F, Wan W (2020) Accelerated antimony and copper removal by manganese oxide embedded in biochar with enlarged pore structure. Chem Eng J 402:1–10. https://doi.org/10.1016/j.cej.2020.126021
doi: 10.1016/j.cej.2020.126021
Wang Y-Y, Ji H-Y, Lu H-H, Liu Y-X, Yang R-Q, He L-L, Yang S-M (2018) Simultaneous removal of Sb(III) and Cd(II) in water by adsorption onto a MnFe
doi: 10.1039/c7ra13151h
Wang S, Zhao M, Zhou M, Li YC, Wang J, Gao B, Sato S, Feng K, Yin W, Igalavithana AD, Oleszczuk P, Wang X, Ok YS (2019) Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review. J Hazard Mater 373:820–834. https://doi.org/10.1016/j.jhazmat.2019.03.080
doi: 10.1016/j.jhazmat.2019.03.080
Weng X, Sun Q, Lin S, Chen Z, Megharaj M, Naidu R (2014) Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles. Chemosphere 103:80–85. https://doi.org/10.1016/j.chemosphere.2013.11.033
doi: 10.1016/j.chemosphere.2013.11.033
Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158:1169–1181. https://doi.org/10.1016/j.envpol.2009.10.045
doi: 10.1016/j.envpol.2009.10.045
Wu Q, Xian Y, He Z, Zhang Q, Wu J, Yang G, Zhang X, Qi H, Ma J, Xiao Y, Long L (2019) Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-52554-2
doi: 10.1038/s41598-019-52554-2
Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108. https://doi.org/10.1016/j.watres.2007.02.037
doi: 10.1016/j.watres.2007.02.037
Xu J, Liu X, Cao Z, Bai W, Shi Q, Yang Y (2020) Fast degradation, large capacity, and high electron efficiency of chloramphenicol removal by different carbon-supported nanoscale zerovalent iron. J Hazard Mater 384:1–10. https://doi.org/10.1016/j.jhazmat.2019.121253
doi: 10.1016/j.jhazmat.2019.121253
Xu S, Li J, Yin Z, Liu S, Bian S, Zhang Y (2020) A highly efficient strategy for enhancing the adsorptive and magnetic capabilities of biochar using Fenton oxidation. Bioresour Technol 315:1–9. https://doi.org/10.1016/j.biortech.2020.123797
doi: 10.1016/j.biortech.2020.123797
Xu R, Li Q, Nan X, Yang Y, Xu B, Li K, Wang L, Zhang Y, Jiang T (2022) Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: performance and mechanisms. J Hazard Mater 422:1–13. https://doi.org/10.1016/j.jhazmat.2021.126821
doi: 10.1016/j.jhazmat.2021.126821
Ye S, Zeng G, Tan X, Wu H, Liang J, Song B, Tang N, Zhang P, Yang Y, Chen Q, Li X (2020) Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer. Appl Catal B 269:1–11. https://doi.org/10.1016/j.apcatb.2020.118850
doi: 10.1016/j.apcatb.2020.118850
Zeng J, Qi P, Shi J, Pichler T, Wang F, Wang Y, Sui K (2020) Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): synergistic effect and mechanism. Chem Eng J 382:1–9. https://doi.org/10.1016/j.cej.2019.122999
doi: 10.1016/j.cej.2019.122999
Zhang W, Mao S, Chen H, Huang L, Qiu R (2013) Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour Technol 147:545–552. https://doi.org/10.1016/j.biortech.2013.08.082
doi: 10.1016/j.biortech.2013.08.082
Zhang H, Liu X, Jiang Y, Gao L, Yu L, Lin N, He Y, Liu CT (2017) Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic. J Hazard Mater 338:364–371. https://doi.org/10.1016/j.jhazmat.2017.05.049
doi: 10.1016/j.jhazmat.2017.05.049
Zhang Q, Wang Y, Wang Z, Zhang Z, Wang X, Yang Z (2021) Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water. J Alloys Compd 852:1–9. https://doi.org/10.1016/j.jallcom.2020.156993
doi: 10.1016/j.jallcom.2020.156993
Zhang L, Dong Y, Liu J, Liu W, Lu Y, Lin H (2022) Promotion of higher synthesis temperature for higher-efficient removal of antimonite and antimonate in aqueous solution by iron-loaded porous biochar. Bioresour Technol 363:1–9. https://doi.org/10.1016/j.biortech.2022.127889
doi: 10.1016/j.biortech.2022.127889
Zhou Y, Wang T, Zhi D, Guo B, Zhou Y, Nie J, Huang A, Yang Y, Huang H, Luo L (2019) Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review. J Mater Sci 54:12171–12188. https://doi.org/10.1007/s10853-019-03606-5
doi: 10.1007/s10853-019-03606-5
Zou J, Liu H, Luo J, Xing Q, Du H, Jiang X, Luo X, Luo S, Suib SL (2016) Three-dimensional reduced graphene oxide coupled with Mn
doi: 10.1021/acsami.6b05895