Construction of a xylose metabolic pathway in Trichosporonoides oedocephalis ATCC 16958 for the production of erythritol and xylitol.
Erythritol
Metabolic engineering
Osmotic pressure
T. oedocephalis
Xylitol
Xylose
Journal
Biotechnology letters
ISSN: 1573-6776
Titre abrégé: Biotechnol Lett
Pays: Netherlands
ID NLM: 8008051
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
27
03
2023
accepted:
15
07
2023
revised:
18
05
2023
medline:
10
11
2023
pubmed:
13
10
2023
entrez:
13
10
2023
Statut:
ppublish
Résumé
Erythritol is a valuable compound as sweetener and chemical material however cannot be fermented from the abundant substrate xylose. The strain Trichosporonoides oedocephalis ATCC 16958 was employed to produce polyols including xylitol and erythritol by metabolic engineering approaches. The introduction of a substrate-specific ribose-5-phosphate isomerase endowed T. oedocephalis with xylose-assimilation activity to produce xylitol, and eliminated glycerol production simultaneously. A more value-added product, erythritol was produced by further introducing a homologous xylulose kinase. The carbon flux was redirected from xylitol to erythritol by adding high osmotic pressure. The production of erythritol was improved to 46.5 g/L in flasks by fermentation adjustment, and the process was scaled up in a 5-L fermentor, with a 40 g/L erythritol production after 120 h, and a time-space yield of 0.56 g/L/h. This study demonstrated the potential of T. oedocephalis in the synthesis of multiple useful products from xylose.
Identifiants
pubmed: 37831286
doi: 10.1007/s10529-023-03428-1
pii: 10.1007/s10529-023-03428-1
doi:
Substances chimiques
Xylitol
VCQ006KQ1E
Erythritol
RA96B954X6
Xylose
A1TA934AKO
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1529-1539Subventions
Organisme : National Natural Science Foundation
ID : 21676173
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Amada Y, Watanabe H, Hirai Y et al (2012) Production of biobutanediols by the hydrogenolysis of erythritol. ChemSusChem 5:1991–1999. https://doi.org/10.1002/cssc.201200121
doi: 10.1002/cssc.201200121
pubmed: 22865539
Burschäpers J, Schustolla D, Schügerl K et al (2002) Engineering aspects of the production of sugar alcohols with the osmophilic yeast Moniliella tomentosa var pollinis: Part 2. Batch and fed-batch operation in bubble column and airlift tower loop if reactors. Process Biochem 38:559–570. https://doi.org/10.1016/S0032-9592(02)00179-6
doi: 10.1016/S0032-9592(02)00179-6
Carly F, Gamboa-Melendez H, Vandermies M et al (2017) Identification and characterization of EYK1, a key gene for erythritol catabolism in Yarrowia lipolytica. Appl Microbiol Biotechnol 101:6587–6596. https://doi.org/10.1007/s00253-017-8361-y
doi: 10.1007/s00253-017-8361-y
pubmed: 28608278
Chi P, Wang S, Ge X et al (2019) Efficient D-threitol production by an engineered strain of Yarrowia lipolytica overexpressing xylitol dehydrogenase gene from Scheffersomyces stipitis. Biochem Eng J 149:107259. https://doi.org/10.1016/j.bej.2019.107259
doi: 10.1016/j.bej.2019.107259
den Hartog GJM, Boots AW, Adam-Perrot A et al (2010) Erythritol is a sweet antioxidant. Nutrition 26:449–458. https://doi.org/10.1016/j.nut.2009.05.004
doi: 10.1016/j.nut.2009.05.004
Erian AM, Sauer M (2022) Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols—a review. Bioresour Technol 346:126296. https://doi.org/10.1016/j.biortech.2021.126296
doi: 10.1016/j.biortech.2021.126296
pubmed: 34798255
Fox KJ, Prather KLJ (2020) Carbon catabolite repression relaxation in Escherichia coli: global and sugar-specific methods for glucose and secondary sugar co-utilization. Curr Opin Chem Eng 30:9–16. https://doi.org/10.1016/j.coche.2020.05.005
doi: 10.1016/j.coche.2020.05.005
Guo J, Li J, Chen Y et al (2016) Improving erythritol production of Aureobasidium pullulans from xylose by mutagenesis and medium optimization. Appl Biochem Biotechnol 180:717–727. https://doi.org/10.1007/s12010-016-2127-3
doi: 10.1007/s12010-016-2127-3
pubmed: 27402193
Guo Q, Ullah I, Zheng L-J et al (2022) Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures. Biotechnol Bioeng 119:388–398. https://doi.org/10.1002/bit.28002
doi: 10.1002/bit.28002
pubmed: 34837379
Hentenaar DFM, De Waal YCM, Stewart RE et al (2021) Erythritol airpolishing in the non-surgical treatment of peri-implantitis: a randomized controlled trial. Clin Oral Implants Res 32:840–852. https://doi.org/10.1111/clr.13757
doi: 10.1111/clr.13757
pubmed: 33844373
pmcid: 8360148
Hollinshead W, He L, Tang YJ (2014) Biofuel production: an odyssey from metabolic engineering to fermentation scale-up. Front Microbiol 5:344. https://doi.org/10.3389/fmicb.2014.00344
doi: 10.3389/fmicb.2014.00344
pubmed: 25071754
pmcid: 4088188
Jagtap SS, Rao CV (2018) Production of D-arabitol from D-xylose by the oleaginous yeast Rhodosporidium toruloides IFO0880. Appl Microbiol Biotechnol 102:143–151. https://doi.org/10.1007/s00253-017-8581-1
doi: 10.1007/s00253-017-8581-1
pubmed: 29127468
Jo S, Yoon J, Lee S-M et al (2017) Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. J Biotechnol 258:69–78. https://doi.org/10.1016/j.jbiotec.2017.01.015
doi: 10.1016/j.jbiotec.2017.01.015
pubmed: 28153765
Kang P, Li L, Yan L et al (2019) Enhancement of erythritol production in Trichosporonoides oedocephalis by regulating cellular morphology with betaine. Chem Pap 73:2065–2072. https://doi.org/10.1007/s11696-019-00766-1
doi: 10.1007/s11696-019-00766-1
Kayingo G, Kilian SG, Prior BA (2001) Conservation and release of osmolytes by yeasts during hypo-osmotic stress. Arch Microbiol 177:29–35. https://doi.org/10.1007/s00203-001-0358-2
doi: 10.1007/s00203-001-0358-2
pubmed: 11797041
Khatape AB, Dastager SG, Rangaswamy V (2022) An overview of erythritol production by yeast strains. FEMS Microbiol Lett 369:fnac107. https://doi.org/10.1093/femsle/fnac107
doi: 10.1093/femsle/fnac107
pubmed: 36354105
Kim SR, Park Y-C, Jin Y-S, Seo J-H (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31:851–861. https://doi.org/10.1016/j.biotechadv.2013.03.004
doi: 10.1016/j.biotechadv.2013.03.004
pubmed: 23524005
Kim J, Hwang S, Lee S-M (2022) Metabolic engineering for the utilization of carbohydrate portions of lignocellulosic biomass. Metab Eng 71:2–12. https://doi.org/10.1016/j.ymben.2021.10.002
doi: 10.1016/j.ymben.2021.10.002
pubmed: 34626808
Kobayashi Y, Iwata H, Mizushima D et al (2015a) Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source. Lett Appl Microbiol 60:475–480. https://doi.org/10.1111/lam.12391
doi: 10.1111/lam.12391
pubmed: 25645520
Kobayashi Y, Iwata H, Yoshida J et al (2015b) Metabolic correlation between polyol and energy-storing carbohydrate under osmotic and oxidative stress condition in Moniliella megachiliensis. J Biosci Bioeng 120:405–410. https://doi.org/10.1016/j.jbiosc.2015.02.014
doi: 10.1016/j.jbiosc.2015.02.014
pubmed: 25795573
Lee S-M, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:122. https://doi.org/10.1186/s13068-014-0122-x
doi: 10.1186/s13068-014-0122-x
pubmed: 25170344
pmcid: 4147937
Li L, Yang T, Guo W et al (2016a) Construction of an efficient mutant strain of trichosporonoides oedocephalis with HOG1 gene deletion for production of erythritol. J Microbiol Biotechnol 26:700–709. https://doi.org/10.4014/jmb.1510.10049
doi: 10.4014/jmb.1510.10049
pubmed: 26718472
Li L, Yang T, Hu C et al (2016b) Transformation of the yeast Trichosporonoides oedocephalis. Antonie van Leeuwenhoek 109:305–309. https://doi.org/10.1007/s10482-015-0633-x
doi: 10.1007/s10482-015-0633-x
pubmed: 26671413
Li L, Gu L, Ju X et al (2017) Osmotic pressure regulation using KCl for enhanced erythritol production using trichosporonoides oedocephalis ATCC 16958. Food Sci Technol Res 23:793–800. https://doi.org/10.3136/fstr.23.793
doi: 10.3136/fstr.23.793
Li L, Kang P, Ju X et al (2018) Enhancement of erythritol production by Trichosporonoides oedocephalis ATCC 16958 through regulating key enzyme activity and the NADPH/NADP ratio with metal ion supplementation. Prep Biochem Biotechnol 48:257–263. https://doi.org/10.1080/10826068.2018.1425712
doi: 10.1080/10826068.2018.1425712
pubmed: 29355459
Liang P, Cao M, Li J et al (2023) Expanding sugar alcohol industry: microbial production of sugar alcohols and associated chemocatalytic derivatives. Biotechnol Adv 64:108105. https://doi.org/10.1016/j.biotechadv.2023.108105
doi: 10.1016/j.biotechadv.2023.108105
pubmed: 36736865
Martău GA, Coman V, Vodnar DC (2020) Recent advances in the biotechnological production of erythritol and mannitol. Crit Rev Biotechnol 40:608–622. https://doi.org/10.1080/07388551.2020.1751057
doi: 10.1080/07388551.2020.1751057
pubmed: 32299245
Palladino F, Rodrigues RCLB, da Silva SP, Rosa CA (2023) Strategy to reduce acetic acid in sugarcane bagasse hemicellulose hydrolysate concomitantly with xylitol production by the promising yeast Cyberlindnera xylosilytica in a bioreactor. Biotechnol Lett 45:263–272. https://doi.org/10.1007/s10529-022-03337-9
doi: 10.1007/s10529-022-03337-9
pubmed: 36586052
Rice T, Zannini E, Arendt KE, Coffey A (2020) A review of polyols—biotechnological production, food applications, regulation, labeling and health effects. Crit Rev Food Sci Nutr 60:2034–2051. https://doi.org/10.1080/10408398.2019.1625859
doi: 10.1080/10408398.2019.1625859
pubmed: 31210053
Rosa CA, Jindamorakot S, Limtong S et al (2009) Synonymy of the yeast genera Moniliella and Trichosporonoides and proposal of Moniliella fonsecae sp. nov. and five new species combinations. Int J Syst Evol Microbiol 59:425–429. https://doi.org/10.1099/ijs.0.65117-0
doi: 10.1099/ijs.0.65117-0
pubmed: 19196790
Tang H, Ju X, Zhao J, Li L (2021) Engineering ribose-5-phosphate isomerase B from a central carbon metabolic enzyme to a promising sugar biocatalyst. Appl Microbiol Biotechnol 105:509–523. https://doi.org/10.1007/s00253-020-11075-z
doi: 10.1007/s00253-020-11075-z
pubmed: 33394147
Tang H, Zhou Z, Chen Z et al (2022) Development of a sugar isomerase cascade to convert D-xylose to rare sugars. Mol Catal 531:112672. https://doi.org/10.1016/j.mcat.2022.112672
doi: 10.1016/j.mcat.2022.112672
Tang H, Chen Z, Shao Y et al (2023) Development of an enzymatic cascade to systematically utilize lignocellulosic monosaccharide. J Sci Food Agric 103:1974–1980. https://doi.org/10.1002/jsfa.12364
doi: 10.1002/jsfa.12364
pubmed: 36448581
Wang B, Xu X, Fang Y et al (2022) Effect of different ratios of glycerol and erythritol on properties of corn starch-based films. Front Nutr 9:882682
doi: 10.3389/fnut.2022.882682
pubmed: 35548578
pmcid: 9083458
Wasylenko TM, Stephanopoulos G (2015) Metabolomic and 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol Bioeng 112:470–483. https://doi.org/10.1002/bit.25447
doi: 10.1002/bit.25447
pubmed: 25311863
Yang L-B, Zhan X-B, Zheng Z-Y et al (2014) A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour Technol 151:120–127. https://doi.org/10.1016/j.biortech.2013.10.031
doi: 10.1016/j.biortech.2013.10.031
pubmed: 24215768
Yuhe L, Steven-Friso K, den Gil VB et al (2020) A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 367:1385–1390. https://doi.org/10.1126/science.aau1567
doi: 10.1126/science.aau1567
Zhang L, Chen Z, Wang J et al (2021a) Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microb Cell Fact 20:105. https://doi.org/10.1186/s12934-021-01596-1
doi: 10.1186/s12934-021-01596-1
pubmed: 34034730
pmcid: 8147403
Zhang L, Nie M-Y, Liu F et al (2021b) Multiple gene integration to promote erythritol production on glycerol in Yarrowia lipolytica. Biotechnol Lett 43:1277–1287. https://doi.org/10.1007/s10529-021-03113-1
doi: 10.1007/s10529-021-03113-1
pubmed: 33797654
Zhou H, Cheng J, Wang BL et al (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622. https://doi.org/10.1016/j.ymben.2012.07.011
doi: 10.1016/j.ymben.2012.07.011
pubmed: 22921355